50 research outputs found

    A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    Get PDF
    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the NavierStokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the non-equilibrium flow study. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well. (C) 2016 Elsevier Inc. All rights reserved

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Numerical simulation of precipitation kinetics in multicomponent alloys

    No full text
    A universal numerical model based on the particle size distribution (PSD) approach has been developed for the simulation of precipitation kinetics in multicomponent alloys during isothermal ageing. Nucleation was implemented utilizing the classical nucleation theory (CNT). Growth and coarsening were modeled by a single growth kinetics equation, which is constructed based on the interfacial diffusion flux balance and the capillarity effect. Only partial off-diagonal terms in the diffusion matrix (diffusion of individual components in the matrix) were taken into account in the calculations to minimize the computational cost while coupling with CALPHAD to extract thermodynamics equilibrium around the interface. A new feature of the model is the incorporation of a more realistic spatial site distribution via a Voronoi construction in the characteristic cell, for the purpose of modifying the diffusion distance. Computational predictions of the precipitate dimensions and the precipitation kinetics were compared with the atom probe tomography (APT) measurements on ternary Ni-Al-Cr alloys isothermally aged at 873 K. It is found that the temporal evolution of the dimensions and composition of the precipitates is well captured, as is the dependence on changes in the alloy composition. The new modification with Voronoi construction demonstrates that the overall precipitation kinetics depends on the density and the spatial site distribution of precipitates. The ability to handle sophisticated alloy chemistries by quantitative equations, the compositional sensitivity of microstructural characteristics emerging from the simulation results, and the ability to visualize the spatial distribution of precipitates make the work very promising for multicomponent alloy design and optimization.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Novel Aerospace Material

    An Alternative Model to Determine the Financing Structure of PPP-Based Young Graduate Apartments in China: A Case Study of Hangzhou

    No full text
    Public-private partnerships (PPP) can be employed to provide public rental housing for young graduates, which has been urgent to achieve social sustainability in China. However, few studies have been conducted to investigate the financing structure of PPPs, particularly the ratio of private investment, which is important in initiating a PPP project. This study develops a robust model to determine the financing structure through considering the uncertainties in operation. A case study in Hangzhou demonstrates the process of the model. The relevant findings provide private investors and the local government with effective references for negotiating the financing structure of a PPP project.OTBArchitecture and The Built Environmen

    More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks

    No full text
    Graph Neural Networks (GNNs) are a class of deep learning-based methods for processing graph domain information. GNNs have recently become a widely used graph analysis method due to their superior ability to learn representations for complex graph data. Due to privacy concerns and regulation restrictions, centralized GNNs can be difficult to apply to data-sensitive scenarios. Federated learning (FL) is an emerging technology developed for privacy-preserving settings when several parties need to train a shared global model collaboratively. Although several research works have applied FL to train GNNs (Federated GNNs), there is no research on their robustness to backdoor attacks.This paper bridges this gap by conducting two types of backdoor attacks in Federated GNNs: centralized backdoor attacks (CBA) and distributed backdoor attacks (DBA). Our experiments show that the DBA attack success rate is higher than CBA in almost all cases. For CBA, the attack success rate of all local triggers is similar to the global trigger, even if the training set of the adversarial party is embedded with the global trigger. To explore the properties of two backdoor attacks in Federated GNNs, we evaluate the attack performance for a different number of clients, trigger sizes, poisoning intensities, and trigger densities. Finally, we explore the robustness of DBA and CBA against two state-of-the-art defenses. We find that both attacks are robust against the investigated defenses, necessitating the need to consider backdoor attacks in Federated GNNs as a novel threat that requires custom defenses.Cyber Securit

    ROSE: Robust Searchable Encryption with Forward and Backward Security

    No full text
    Dynamic searchable symmetric encryption (DSSE) has been widely recognized as a promising technique to delegate update and search queries over an outsourced database to an untrusted server while guaranteeing the privacy of data. Many efforts on DSSE have been devoted to obtaining a good tradeoff between security and performance. However, it appears that all existing DSSE works miss studying on what will happen if the DSSE client issues irrational update queries carelessly, such as duplicate update queries and delete queries to remove non-existent entries (that have been considered by many popular database system in the setting of plaintext). In this scenario, we find that (1) most prior works lose their claimed correctness or security, and (2) no single approach can achieve correctness, forward and backward security, and practical performance at the same time. To address this problem, we study for the first time the notion of robustness of DSSE. Generally, we say that a DSSE scheme is robust if it can keep the same correctness and security even in the case of misoperations. Then, we introduce a new cryptographic primitive named key-updatable pseudo-random function and apply this primitive to constructing ROSE, a robust DSSE scheme with forward and backward security. Finally, we demonstrate the efficiency of ROSE and give the experimental comparisons.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Cyber Securit

    Interfacial Tensions, Solubilities, and Transport Properties of the H<sub>2</sub>/H<sub>2</sub>O/NaCl System: A Molecular Simulation Study

    No full text
    Data for several key thermodynamic and transport properties needed for technologies using hydrogen (H2), such as underground H2 storage and H2O electrolysis are scarce or completely missing. Force field-based Molecular Dynamics (MD) and Continuous Fractional Component Monte Carlo (CFCMC) simulations are carried out in this work to cover this gap. Extensive new data sets are provided for (a) interfacial tensions of H2 gas in contact with aqueous NaCl solutions for temperatures of (298 to 523) K, pressures of (1 to 600) bar, and molalities of (0 to 6) mol NaCl/kg H2O, (b) self-diffusivities of infinitely diluted H2 in aqueous NaCl solutions for temperatures of (298 to 723) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O, and (c) solubilities of H2 in aqueous NaCl solutions for temperatures of (298 to 363) K, pressures of (1 to 1000) bar, and molalities of (0 to 6) mol NaCl/kg H2O. The force fields used are the TIP4P/2005 for H2O, the Madrid-2019 and the Madrid-Transport for NaCl, and the Vrabec and Marx for H2. Excellent agreement between the simulation results and available experimental data is found with average deviations lower than 10%.Geoscience and EngineeringMechanical, Maritime and Materials EngineeringTeam Poulumi DeyProcess and Energ

    Ballistic transport in graphene grown by chemical vapor deposition

    No full text
    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ?1??m. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.QN/Quantum NanoscienceApplied Science

    Bioproduced Polymers Self-Assemble with Graphene Oxide into Nanocomposite Films with Enhanced Mechanical Performance

    No full text
    Graphene oxide (GO) has recently been highlighted as a promising multipurpose two-dimensional material. However, free-standing graphene oxide films suffer from poor strength and flexibility, which limits scaling-up of production and lifetime structural robustness in applications. Inspired by the relationship between the organic and inorganic components of the hierarchical structure of nacre found in mollusk shells, we have fabricated self-assembled, layered graphene-based composite films. The organic phase of our composite is produced via environmentally friendly and economical methods based on bacterial production of γ-poly(glutamic acid) (PGA). Composite films made of GO, PGA, and divalent cations (Ca2+) were prepared through a slow solvent evaporation method at ambient temperature, resulting in a nacre-like layered structure. These biobased nanocomposite films showed impressive mechanical properties, which resulted from a synergistic combination of hydrogen bonding with the bacterially produced PGA and ionic bonding with calcium ions (Ca2+). The GO/PGA/Ca2+ composite films possessed a high strength of 150 ± 51.9 MPa and a high Young's modulus of 21.4 ± 8.7 GPa, which represents an increase of 120% and over 70% with respect to pure GO films. We provide rational design strategies for the production of graphene-based films with improved mechanical performance, which can be applied in filtration purification of wastewater in the paper, food, beverage, pigment, and pharmaceuticals industries, as well as for manufacturing of functional membranes and surface coatings. BN/Marie-Eve Aubin-Tam La

    Experimental study of flexural fatigue behaviour of cement paste at the microscale

    No full text
    This study presents an experimental investigation of fatigue properties of cement paste at the microscale. A strong size dependence is found for the flexural fatigue life of the cement paste specimen. Microscopic observations on the fractured surfaces suggest that there is a higher density of nano-scale cracks generated during the fatigue loading compared to the static fracture. However, the fatigue damage evolution is found to be very slow and small even under high stress levels. The development of residual deformation for cement paste can be explained by the combined effects of viscoelastic deformation and fatigue cracking growth.Materials and EnvironmentTransport and Plannin
    corecore