20 research outputs found

    Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery

    Get PDF
    Purpose We assessed the role of monocarboxylate transporter 1 (MCT1) on lactate clearance during an active recovery after high-intensity exercise, by comparing genetic groups based on the T1470A (rs1049434) MCT1 polymorphism, whose influence on lactate transport has been proven. Methods Sixteen young male elite field hockey players participated in this study. All of them completed two 400 m maximal run tests performed on different days, followed by 40 min of active or passive recovery. Lactate samples were measured immediately after the tests, and at min 10, 20, 30 and 40 of the recoveries. Blood lactate decreases were calculated for each 10-min period. Participants were distributed into three groups according to the T1470A polymorphism (TT, TA and AA). Results TT group had a lower blood lactate decrease than AA group during the 10?20 min period of the active recovery (p = 0.018). This period had the highest blood lactate for the whole sample, significantly differing from the other periods (p ? 0.003). During the passive recovery, lactate declines were constant except for the 0?10-min period (p ? 0.003), suggesting that liver uptake is similar in all the genetic groups, and that the difference seen during the active recovery is mainly due to muscle lactate uptake. Conclusions These differences according to the polymorphic variant T1470A suggest that MCT1 affects the plasma lactate decrease during a crucial period of active recovery, where the maximal lactate amount is cleared (i.e. 10?20 min period)

    Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Get PDF
    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Worksite tobacco prevention in the Canton of Zurich: stages of change, predictors, and outcomes

    Full text link
    OBJECTIVES: This study provides information about the prevalence of tobacco prevention (TP) and the stages of change with respect to the introduction of TP among companies in the Canton of Zurich (n = 1,648). It explores the factors that predict restrictiveness of smoking policies, number of individual support measures, interest in services to promote TP, and the relationship between TP and health outcomes. METHODS: Data were gathered by means of a written questionnaire and analysed using ordinal regression models. RESULTS: Whereas many companies maintain smoke-free policies, only few provide cessation-courses. Health and welfare organisations have strictest, and building and hospitality companies have least strict policies. Company size predicts number of individual support measures but not policy restrictiveness. Both measures are predicted by personal concern of the representative. Interest in services is predicted by tobacco-related problems and medium stages of change. Finally, stricter policies are associated with lower proportion of smokers and less tobacco-related problems. CONCLUSIONS: Health professionals should support less advanced companies in their endeavour to implement TP. The findings provide a baseline to evaluate the implementation of the forthcoming smoke-free legislation

    Comparative genomics and transcriptomics of lactation

    Full text link
    Lactation is an important characteristic of mammalian reproduction sometimes referred to as the quintessence of mammals. Comparative genomics and transcriptomics experiments are allowing a more in-depth molecular analysis of the evolution of lactation throughout the mammalian kingdom and these recent results are reviewed here. Milk cell and mammary gland gene expression analysis with sequencing methodology have started to reveal conserved or specific milk protein and components of the lactation system of monotreme, marsupial and eutherian lineages. These experiments have confirmed the ancient origin of the complex lactation system and provided useful insight into the function of specific milk proteins in the control of the lactation programme or the role of milk in the regulation of growth and development of the young beyond simple nutritive aspects

    A novel approach identified the FOLR1 gene, a putative regulator of milk protein synthesis

    Full text link
    This study has utilised comparative functional genomics to exploit animal models with extreme adaptation to lactation to identify candidate genes that specifically regulate protein synthesis in the cow mammary gland. Increasing milk protein production is valuable to the dairy industry. The lactation strategies of both the Cape fur seal (Artocephalus pusillus pusillus) and the tammar wallaby (Macropus eugenii) include periods of high rates of milk protein synthesis during an established lactation and therefore offer unique models to target genes that specifically regulate milk protein synthesis. Global changes in mammary gene expression in the Cape fur seal, tammar wallaby, and the cow (Bos taurus) were assessed using microarray analysis. The folate receptor &alpha; (FOLR1) showed the greatest change in gene expression in all three species [cow 12.7-fold (n = 3), fur seal 15.4-fold (n = 1), tammar 2.4-fold (n = 4)] at periods of increased milk protein production. This compliments previous reports that folate is important for milk protein synthesis and suggests FOLR1 may be a key regulatory point of folate metabolism for milk protein synthesis within mammary epithelial cells (lactocytes). These data may have important implications for the dairy industry to develop strategies to increase milk protein production in cows. This study illustrates the potential of comparative genomics to target genes of interest to the scientific community. <br /
    corecore