93 research outputs found

    Visual adaptation alters the apparent speed of real-world actions

    Get PDF
    The apparent physical speed of an object in the field of view remains constant despite variations in retinal velocity due to viewing conditions (velocity constancy). For example, people and cars appear to move across the field of view at the same objective speed regardless of distance. In this study a series of experiments investigated the visual processes underpinning judgements of objective speed using an adaptation paradigm and video recordings of natural human locomotion. Viewing a video played in slow-motion for 30seconds caused participants to perceive subsequently viewed clips played at standard speed as too fast, so playback had to be slowed down in order for it to appear natural; conversely after viewing fast-forward videos for 30seconds, playback had to be speeded up in order to appear natural. The perceived speed of locomotion shifted towards the speed depicted in the adapting video (‘re-normalisation’). Results were qualitatively different from those obtained in previously reported studies of retinal velocity adaptation. Adapting videos that were scrambled to remove recognizable human figures or coherent motion caused significant, though smaller shifts in apparent locomotion speed, indicating that both low-level and high-level visual properties of the adapting stimulus contributed to the changes in apparent speed

    An Ancient Duplication of Exon 5 in the Snap25 Gene Is Required for Complex Neuronal Development/Function

    Get PDF
    Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes

    LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown.</p> <p>Methods</p> <p>We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC <it>in vivo </it>using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC.</p> <p>Results</p> <p>Three million tags were sequenced using <it>in vivo </it>samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (<it>CCNH, CUEDC2, FLNA, PSMA7</it>), steroid synthesis and metabolism (<it>DHCR24, DHRS7</it>, <it>ELOVL5, HSD17B4</it>, <it>OPRK1</it>), neuroendocrine (<it>ENO2, MAOA, OPRK1, S100A10, TRPM8</it>), and proliferation (<it>GAS5</it>, <it>GNB2L1</it>, <it>MT-ND3</it>, <it>NKX3-1</it>, <it>PCGEM1</it>, <it>PTGFR</it>, <it>STEAP1</it>, <it>TMEM30A</it>), but neither supported nor discounted a role for cell survival genes.</p> <p>Conclusions</p> <p>The <it>in vivo </it>gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Ocular sonography: The experience in Lagos

    No full text
    No Abstract

    Evaluation of Protective Activity of Ethanolic Stem Bark Extract of Lantana Camara on Carbon Tetrachloride-induced Acute Hepatic Injury in Wistar Rats

    No full text
    In this study, the protective effects of 50 – 300 mg/kg/oral of the ethanolic extract of Lantana Camara stem bark were investigated in carbon tetrachloride (CCl4)-induced acute liver injury in non-hepatectomized Wistar rats. Results showed Lantana camara extract to significantly (

    T

    No full text
    • 

    corecore