8 research outputs found

    A multivariate analysis of serum nutrient levels and lung function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is mounting evidence that estimates of intakes of a range of dietary nutrients are related to both lung function level and rate of decline, but far less evidence on the relation between lung function and objective measures of serum levels of individual nutrients. The aim of this study was to conduct a comprehensive examination of the independent associations of a wide range of serum markers of nutritional status with lung function, measured as the one-second forced expiratory volume (FEV<sub>1</sub>).</p> <p>Methods</p> <p>Using data from the Third National Health and Nutrition Examination Survey, a US population-based cross-sectional study, we investigated the relation between 21 serum markers of potentially relevant nutrients and FEV<sub>1</sub>, with adjustment for potential confounding factors. Systematic approaches were used to guide the analysis.</p> <p>Results</p> <p>In a mutually adjusted model, higher serum levels of antioxidant vitamins (vitamin A, beta-cryptoxanthin, vitamin C, vitamin E), selenium, normalized calcium, chloride, and iron were independently associated with higher levels of FEV<sub>1</sub>. Higher concentrations of potassium and sodium were associated with lower FEV<sub>1</sub>.</p> <p>Conclusion</p> <p>Maintaining higher serum concentrations of dietary antioxidant vitamins and selenium is potentially beneficial to lung health. In addition other novel associations found in this study merit further investigation.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Targeting cytotoxic T lymphocytes for cancer immunotherapy

    No full text
    In light of their preeminent role in cellular immunity, there is considerable interest in targeting of cytotoxic T-lymphocytes to cancer. This review summarises the active and passive immunotherapeutic approaches under development to achieve this goal, emphasising how recent advances in tumour immunology and gene transfer have impacted upon this field

    EAACI position paper:Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis

    Get PDF
    The prevalence of allergic diseases such as allergic rhinitis, asthma, food allergy, and atopic dermatitis has increased dramatically during the last decades, which is associated with altered environmental exposures and lifestyle practices. The purpose of this review was to highlight the potential role for dietary fatty acids, in the prevention and management of these disorders. In addition to their nutritive value, fatty acids have important immunoregulatory effects. Fatty acid-associated biological mechanisms, human epidemiology, and intervention studies are summarized in this review. The influence of genetics and the microbiome on fatty acid metabolism is also discussed. Despite critical gaps in our current knowledge, it is increasingly apparent that dietary intake of fatty acids may influence the development of inflammatory and tolerogenic immune responses. However, the lack of standardized formats (ie, food versus supplement) and standardized doses, and frequently a lack of prestudy serum fatty acid level assessments in clinical studies significantly limit our ability to compare allergy outcomes across studies and to provide clear recommendations at this time. Future studies must address these limitations and individualized medical approaches should consider the inclusion of specific dietary factors for the prevention and management of asthma, food allergy, and atopic dermatitis

    EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis

    No full text

    Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity

    No full text
    corecore