564 research outputs found
Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo
The definitive version is available at www3.interscience.wiley.co
(-)-Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice
<p>Abstract</p> <p>Background</p> <p>(-)-Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP) receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP) receptor in thermal, mechanical, and chemical antinociception induced by (-)-pentazocine using MOP receptor knockout (MOP-KO) mice.</p> <p>Results</p> <p>(-)-Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (-)-pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (-)-pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. <it>In vitro </it>binding and cyclic adenosine monophosphate assays showed that (-)-pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors.</p> <p>Conclusions</p> <p>The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (-)-pentazocine and retention of the visceral chemical antinociceptive effects of (-)-pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (-)-pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (-)-pentazocine.</p
Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse
<p>Abstract</p> <p>Background</p> <p>Tissue-specific gene deletion has proved informative in the analysis of pain pathways. <it>Advillin </it>has been shown to be a pan-neuronal marker of spinal and cranial sensory ganglia. We generated BAC transgenic mice using the <it>Advillin </it>promoter to drive a tamoxifen-inducible CreERT2 recombinase construct in order to be able to delete genes in adult animals. We used a floxed stop <it>ROSA26LacZ </it>reporter mouse to examine functional Cre expression, and analysed the behaviour of mice expressing Cre recombinase.</p> <p>Results</p> <p>We used recombineering to introduce a CreERT2 cassette in place of exon 2 of the <it>Advillin </it>gene into a BAC clone (RPCI23-424F19) containing the 5' region of the <it>Advillin </it>gene. Transgenic mice were generated using pronuclear injection. The resulting <it>AvCreERT2 </it>transgenic mice showed a highly specific expression pattern of Cre activity after tamoxifen induction. Recombinase activity was confined to sensory neurons and no expression was found in other organs. Less than 1% of neurons showed Cre expression in the absence of tamoxifen treatment. Five-day intraperitoneal treatment with tamoxifen (2 mg per day) induced Cre recombination events in ≈90% of neurons in dorsal root and cranial ganglia. Cell counts of dorsal root ganglia (DRG) from transgenic animals with or without tamoxifen treatment showed no neuronal cell loss. Sensory neurons in culture showed ≈70% induction after 3 days treatment with tamoxifen. Behavioural tests showed no differences between wildtype, <it>AvCreERT2 </it>and tamoxifen-treated animals in terms of motor function, responses to light touch and noxious pressure, thermal thresholds as well as responses to inflammatory agents.</p> <p>Conclusions</p> <p>Our results suggest that the inducible pan-DRG <it>AvCreERT2 </it>deleter mouse strain is a useful tool for studying the role of individual genes in adult sensory neuron function. The pain phenotype of the Cre-induced animal is normal; therefore any alterations in pain processing can be unambiguously attributed to loss of the targeted gene.</p
Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat.
BACKGROUND: Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP), a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCζ/PKMζ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. RESULTS: Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-ζ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs) following formalin administration. In addition, Complete Freund's Adjuvant (CFA)-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCζ/PKMζ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCζ/PKMζ in dorsal horn neurons, specifically PKMζ phosphorylation in formalin rats. Finally, inhibition of PKCζ/PKMζ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. CONCLUSIONS: These results suggest that PKCζ, especially PKMζ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation
Intratumoral Administration of Secondary Lymphoid Chemokine and Unmethylated Cytosine-phosphorothioate-guanine Oligodeoxynucleotide Synergistically Inhibits Tumor Growth in Vivo
Secondary lymphoid tissue chemokine (SLC), which is expressed in T cell zones of secondary lymphoid organs, including the spleen and lymph nodes, strongly recruits both T lymphocytes and mature dendritic cells. As appropriate interaction of tumor-specific T cells and mature dendritic cells, equipped with tumor antigens, is a prerequisite for effective T cell immunity against established tumors, we mobilized lymphocytes and dendritic cells to tumor sites by intratumoral injection of secondary lymphoid tissue chemokine-Fc (SLC-Fc) fusion protein using the B16F10 murine melanoma model. Activation of dendritic cells, another prerequisite for the effective activation of naïve tumor-specific T cells, was achieved by the addition of immunostimulatory cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG-ODN) into the tumor site. Intratumoral administration of SLC-Fc or CpG-ODN revealed antitumor effects against B16F10 murine melanoma grown in the subcutaneous space. Co-treatment of SLC-Fc and CpG-ODN displayed synergistic effects in reducing the tumor size. The synergistic antitumor effect in co-treatment group was correlated with the synergistic/additive increase in the infiltration of CD4+ T cells and CD11c+ dendritic cells in the tumor mass compared to the single treatment groups. These results suggest that the combined use of chemokines and adjuvant molecules may be a possible strategy in clinical tumor immunotherapy
Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes
The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable
Modular cell-based platform for high throughput identification of compounds that inhibit a viral interferon antagonist of choice
The work was supported by the Medical Research Council, U.K. (University of St Andrews Doctoral Training Grant to AV and CSA), Deutsche Forschungsgemeinschaft (PA 815/2-1) to CP, Tenovus Scotland (T15/38) to MN and Wellcome Trust to CP, MN (ISSF) and RER (101788/Z/13/Z)Viral interferon (IFN) antagonists are a diverse class of viral proteins that counteract the host IFN response, which is important for controlling viral infections. Viral IFN antagonists are often multifunctional proteins that perform vital roles in virus replication beyond IFN antagonism. The critical importance of viral IFN antagonists is highlighted by the fact that almost all viruses encode one of these proteins. Inhibition of viral IFN antagonists has the potential to exert pleiotropic antiviral effects and thus this important protein class represents a diverse plethora of novel therapeutic targets. To exploit this, we have successfully developed and executed a novel modular cell-based platform that facilitates the safe and rapid screening for inhibitors of a viral IFN antagonist of choice. The platform is based on two reporter cell-lines that provide a simple method to detect activation of IFN induction or signaling via an eGFP gene placed under the control of the IFNβ or an ISRE-containing promoter, respectively. Expression of a target IFN antagonist in the appropriate reporter cell-line will block the IFN response and hence eGFP expression. We hypothesized that addition of a compound that inhibits IFN antagonist function will release the block imposed on the IFN response and hence restore eGFP expression, providing a measurable parameter for high throughput screening (HTS). We demonstrate assay proof-of-concept by (i) exploiting hepatitis C virus (HCV) protease inhibitors to inhibit NS3-4A's capacity to block IFN induction and (ii) successfully executing two HTS targeting viral IFN antagonists that block IFN signaling; NS2 and IE1 from human respiratory syncytial virus (RSV) and cytomegalovirus (CMV) respectively, two clinically important viruses for which vaccine development has thus far been unsuccessful and new antivirals are required. Both screens performed robustly and Z′ Factor scores of >0.6 were achieved. We identified (i) four hit compounds that specifically inhibit RSV NS2's ability to block IFN signaling by mediating STAT2 degradation and exhibit modest antiviral activity and (ii) two hit compounds that interfere with IE1 transcription and significantly impair CMV replication. Overall, we demonstrate assay proof-of-concept as we target viral IFN antagonists from unrelated viruses and demonstrate its suitability for HTS.Publisher PDFPeer reviewe
VAST: An ASKAP Survey for Variables and Slow Transients
The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an
unprecedented opportunity to investigate the transient sky at radio
wavelengths. In this paper we present VAST, an ASKAP survey for Variables and
Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP
to enable the discovery and investigation of variable and transient phenomena
from the local to the cosmological, including flare stars, intermittent
pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar
scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In
addition, it will allow us to probe unexplored regions of parameter space where
new classes of transient sources may be detected. In this paper we review the
known radio transient and variable populations and the current results from
blind radio surveys. We outline a comprehensive program based on a multi-tiered
survey strategy to characterise the radio transient sky through detection and
monitoring of transient and variable sources on the ASKAP imaging timescales of
five seconds and greater. We also present an analysis of the expected source
populations that we will be able to detect with VAST.Comment: 29 pages, 8 figures. Submitted for publication in Pub. Astron. Soc.
Australi
- …