284 research outputs found

    Gravitational Lenses as High-Resolution Telescopes

    Full text link
    The inner regions of active galaxies host the most extreme and energetic phenomena in the universe including, relativistic jets, supermassive black hole binaries, and recoiling supermassive black holes. However, many of these sources cannot be resolved with direct observations. I review how strong gravitational lensing can be used to elucidate the structures of these sources from radio frequencies up to very high energy gamma rays. The deep gravitational potentials surrounding galaxies act as natural gravitational lenses. These gravitational lenses split background sources into multiple images, each with a gravitationally-induced time delay. These time delays and positions of lensed images depend on the source location, and thus, can be used to infer the spatial origins of the emission. For example, using gravitationally-induced time delays improves angular resolution of modern gamma-ray instruments by six orders of magnitude, and provides evidence that gamma-ray outbursts can be produced at even thousands of light years from a supermassive black hole, and that the compact radio emission does not always trace the position of the supermassive black hole. These findings provide unique physical information about the central structure of active galaxies, force us to revise our models of operating particle acceleration mechanisms, and challenge our assumptions about the origin of compact radio emission. Future surveys, including LSST, SKA, and Euclid, will provide observations for hundreds of thousands of gravitationally lensed sources, which will allow us to apply strong gravitational lensing to study the multi-wavelength structure for large ensembles of sources. This large ensemble of gravitationally lensed active galaxies will allow us to elucidate the physical origins of multi-wavelength emissions, their connections to supermassive black holes, and their cosmic evolution.Comment: Invited (Accepted) review for Physics Report

    Galaxies as High-Resolution Telescopes

    Full text link
    Recent observations show a population of active galaxies with milliarcseconds offsets between optical and radio emission. Such offsets can be an indication of extreme phenomena associated with supermassive black holes including relativistic jets, binary supermassive black holes, or even recoiling supermassive black holes. However, the multi-wavelength structure of active galaxies at a few milliarcseconds cannot be fathomed with direct observations. We propose using strong gravitational lensing to elucidate the multi-wavelength structure of sources. When sources are located close to the caustic of lensing galaxy, even small offset in the position of the sources results in a drastic difference in the position and magnification of mirage images. We show that the angular offset in the position of the sources can be amplified more than 50 times in the observed position of mirage images. We find that at least 8% of the observed gravitationally lensed quasars will be in the caustic configuration. The synergy between SKA and Euclid will provide an ideal set of observations for thousands of gravitationally lensed sources in the caustic configuration, which will allow us to elucidate the multi-wavelength structure for a large ensemble of sources, and study the physical origin of radio emissions, their connection to supermassive black holes, and their cosmic evolution.Comment: Accepted for publication in Ap

    PKS 1510-089: a rare example of a flat spectrum radio quasar with a very high-energy emission

    Get PDF
    The blazar PKS 1510-089 is an example of flat spectrum radio quasars. High-energy emissions from this class of objects are believed to have been produced by inverse Compton radiation with seed photons originating from the broad line region. In such a paradigm, a lack of very high-energy emissions is expected because of the Klein-Nishina effect and strong absorption in the broad line region. Recent detection of at least three such blazars by Cherenkov telescopes has forced a revision of our understanding of these objects. We have aimed to model the observed spectral energy distribution of PKS 1510-089 from the high-energy flares in March 2009, during which very high-energy emission were also detected by H.E.S.S. We have applied the single-zone internal shock scenario to reproduce the multiwavelength spectrum of PKS~1510-089. We have followed the evolution of the electrons as they propagate along the jet and emit synchrotron and inverse Compton radiation. We have considered two sources of external photons: the dusty torus and the broad line region. We have also examined the effects of the gamma-gamma absorption of the high-energy photons both in the AGN environment (the broad line region and the dusty torus), as well as while traveling over cosmological distances: the extragalactic background light. We have successfully modeled the observed spectrum of PKS 1510-089. In our model, the highest energy emission is the result of the Comptonization of the infrared photons from the dusty torus, thus avoiding Klein-Nishina regime, while the bulk of the emissions in the GeV range may still be dominated by the Comptonization of radiation coming from the broad line region.Comment: Accepted for publication in A&

    New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts

    Full text link
    The abundance of primordial black holes is currently significantly constrained in a wide range of masses. The weakest limits are established for the small mass objects, where the small intensity of the associated physical phenomenon provides a challenge for current experiments. We used gamma- ray bursts with known redshifts detected by the Fermi Gamma-ray Burst Monitor (GBM) to search for the femtolensing effects caused by compact objects. The lack of femtolensing detection in the GBM data provides new evidence that primordial black holes in the mass range 5 \times 10^{17} - 10^{20} g do not constitute a major fraction of dark matter.Comment: 7 pages, 6 figures, submitted to Physical Review
    corecore