
 

 
 

RVC OPEN ACCESS REPOSITORY – COPYRIGHT NOTICE 

 

This is the peer reviewed version of the following article:  

Cribb, T H and Bott, N J and Bray, R A and McNamara, M K A and Miller, T L and Nolan, M 

J and Cutmore, S C (2014)  Trematodes of the Great Barrier Reef, Australia: emerging 

patterns of diversity and richness in coral reef fishes. International Journal for Parasitology, 

44 (12). pp. 929-939 

The final publication is available from the journal site via 

http://dx.doi.org/10.1016/j.ijpara.2014.08.002  

The full details of the published version of the article are as follows: 

 

TITLE: Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and 

richness in coral reef fishes 

AUTHORS: Thomas H. Cribb, Nathan J. Bott, Rodney A. Bray, Marissa K.A. McNamara, 

Terrence L. Miller, Mathew J. Nolan, Scott C. Cutmore 

JOURNAL TITLE: International Journal for Parasitology 

VOLUME/EDITION: 44/12 

PUBLICATION DATE: October 2014 

DOI: 10.1016/j.ijpara.2014.08.002 

 

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RVC Research Online

https://core.ac.uk/display/36777845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijpara.2014.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1  
 

Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and 1 

richness in coral reef fishes 2 

 3 

Thomas H. Cribba,*, Nathan J. Bottb, Rodney A. Brayc, Marissa K. A. McNamarad, Terrence 4 

L. Millere, Mathew J. Nolanf, Scott C. Cutmorea 5 

 6 

a The University of Queensland, School of Biological Sciences, Brisbane, Queensland 4072, 7 

Australia 8 

b School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083, 9 

Australia 10 

c Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, 11 

United Kingdom 12 

d Natural Environments Program, Queensland Museum, South Brisbane, Queensland 4101, 13 

Australia 14 

e School of Marine and Tropical Biology, James Cook University, Cairns, Queensland 4878, 15 

Australia  16 

f Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead 17 

Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom 18 

 19 

* Corresponding author. Tel.: +61 7 3365 2581; fax: +61 7 3365 4699.  20 

E-mail address: T.Cribb@uq.edu.au (T.H. Cribb) 21 

  22 



 2  
 

Abstract 23 

The Great Barrier Reef (GBR) holds the richest array of marine life found anywhere in 24 

Australia, including a diverse and fascinating parasite fauna. Members of one group, the 25 

trematodes, occur as sexually mature adult worms in almost all GBR bony fish species. 26 

Although the first reports of these parasites were made 100 years ago, the fauna has been 27 

studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 28 

there were 94 species known from the GBR and it was predicted that there might be 2,270 in 29 

total. There are now 326 species reported for the region, suggesting that we are in a much 30 

improved position to make an accurate prediction of true trematode richness. Here we review 31 

the current state of knowledge of the fauna and the ways in which our understanding of this 32 

fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–33 

1,800 species. However there remains considerable scope for even these figures to be 34 

incorrect given that fewer than one-third of the fish species of the region have been examined 35 

for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline 36 

what work needs to be done to achieve this and discuss whether this goal is practically 37 

achievable or philosophically justifiable. 38 

 39 

Keywords: Trematoda, richness, diversity, Great Barrier Reef, host-specificity, cryptic 40 

species 41 

 42 

  43 
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1. Introduction 44 

The Great Barrier Reef (GBR) is arguably Australia’s greatest natural asset. It is the 45 

largest coral reef system globally, stretching for some 1,800 km, and its remarkable 46 

complexity harbours the greatest diversity of fishes seen in Australian waters. These fishes 47 

are, of course, infected by a significant range of parasites. Rohde (1976) was the first to 48 

postulate quantitatively on possible parasite richness of the GBR. He suggested that the (then) 49 

1,000 known fish species of the region were likely to have in the order of 20,000 parasite 50 

species. Since this first dramatic prediction, there has been a series of analyses of the possible 51 

richness for different components of the parasite fauna in different parts of the tropical Indo-52 

West Pacific (TIWP) (Cribb et al., 1994b; Whittington, 1998; Justine, 2010; Palm and Bray, 53 

2014). Recently Justine (2010) reviewed patterns of richness for a wide range of metazoan 54 

parasite groups and suggested that the 1,700 New Caledonian reef fishes are likely to harbour 55 

some 17,000 parasite species (excluding protists) of which just 2% are known to science. 56 

When such a high proportion of a predicted fauna remains unknown it is difficult to predict 57 

the final number accurately. Ironically, predictions of richness generally gain the greatest 58 

attention when there is the greatest proportional difference between the known and unknown; 59 

few headlines are made by a suggestion that a fauna of 250 species may rise to 252! 60 

However, rather prosaically, it is only when a fauna is relatively well known that the 61 

predictions or extrapolations of true richness become relatively reliable. 62 

 The trematodes of GBR fishes have now been studied for just over a century. The first 63 

reports from the region were by S.J. Johnston (1913). In the following 75 years there was a 64 

handful of studies by T.H. Johnston, W. Nicoll, W.O. Durio, H.W. Manter, J.C. Pearson and 65 

a few others. By 1988 just 30 trematode species had been reported from GBR fishes. In that 66 

year systematic study of the fauna began when R.J.G. Lester led the International Congress of 67 

Parasitology (ICOPA) parasitological workshop to Heron Island on the southern GBR (Lester 68 

and Sewell, 1990). Since 1988 the present authors and colleagues have been involved in a 69 

sustained study of this fauna. We calculate that there are now 326 species known from the 70 

bony fishes of the region. Cribb et al. (1994b) predicted that GBR fishes may have a fauna of 71 

2,270 trematode species. In the 20 years that followed, much has changed in our 72 

understanding of this fauna.  73 

Here, in what is essentially the 100th anniversary of commencement of work on this 74 

fauna and the 20th anniversary of the last overview of its overall composition, we review the 75 
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nature of progress towards the biodiversity goal of “understanding the system”. Analyses 76 

such as this frequently focus on the generation of a headline figure of predicted true richness 77 

for the fauna. Such predictions typically demonstrate that a vast amount of work remains to 78 

be done (e.g. Appeltans et al., 2012; Nabout et al., 2013), although we note that Strona and 79 

Fattorini (2014) argue that such estimates are frequently overblown. Here, we will attempt to 80 

produce such a figure, but we do so with some reticence. This reticence relates partly to the 81 

inherent difficulties of such predictions and partly to the emptiness of such attempts (Poulin, 82 

2014). Is it ultimately of importance as to whether there are 1,000 or 2,000 trematodes in 83 

GBR fishes, or is what matters the identity of those trematodes, their life-cycles and how they 84 

interact with their various hosts? We suspect the latter, but understand the general interest in 85 

the former. 86 

 87 

2. GBR fish trematode fauna 88 

2.1. The data set 89 

Analyses and remarks made here are based on the parasitological examination of 90 

9,295 individual GBR bony (actinopterygian) fishes belonging to 505 species and 60 91 

families. Although chondrichthyans (sharks, rays and chimaeras) do harbour digeneans, 92 

infections are so infrequent that we find that we cannot justify sampling these animals. 93 

Collection of trematodes from chondrichthyans is dependent on them being found by workers 94 

seeking other groups of parasites (especially cestodes which have radiated widely with the 95 

elasmobranchs). Our target fish were caught by line, seine net, barrier net, anaesthetic and 96 

spear guns. Over time our approach to the examination of fish has evolved from one that 97 

emphasised just the intestinal tract to one that searches for infections under the scales, in the 98 

urinary bladder, the circulatory system and the tissues; we can only speculate on how many 99 

infections were overlooked in our early years. These fishes were collected almost entirely at 100 

Heron Island (5,931 individuals) on the southern GBR and Lizard Island (3,293 individuals) 101 

on the northern GBR. Depth of examination of the 505 species has varied dramatically in line 102 

with collecting priorities and the ease with which species can be collected. A total of 98 fish 103 

species have been sampled at least 30 times but, at the other end of the spectrum, 140 species 104 

have been examined only once or twice. Our data set of published reports covers all marine 105 

fishes from eastern Queensland, Australia, north of the Tropic of Capricorn. Some of the host 106 

fishes reported are not strictly coral reef species but rather than engaging in a complex and 107 
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subjective classification of reef and non-reef species, we have analysed all the records of 108 

which we are aware from this region.  109 

Table 1 summarises the present state of knowledge of trematodes of the bony fishes of 110 

the GBR by family, the numbers of additional species estimated to have been collected by us 111 

but not yet reported, and the known level of global richness for the families (including those 112 

not yet known from the GBR). Fig. 1A shows the accumulation of trematode species for the 113 

fauna over time, Fig. 1B the accumulation of genera, and Fig. 1C the accumulation of new 114 

host/parasite species combinations. In total 326 fully identified species from 32 families have 115 

been reported and are currently considered valid. The fauna comprises just one species from 116 

the subclass Aspidogastrea, Lobatostoma manteri, as reported in detail by Rohde (1973); the 117 

remaining 325 species belong to the subclass Digenea. The 326 species have been reported in 118 

814 unique host/parasite combinations. 119 

 120 

2.2. Characteristics of the fauna 121 

Several features emerge from the data set. First, the figures of 326 species and 814 122 

unique host/parasite combinations are substantial ones, comprising approximately 7.5% of 123 

the global fauna of trematodes of marine fishes. Tellingly, all three accumulation curves (see 124 

Fig. 1) have been almost straight lines for the last 25 years. The fact that there is no hint of a 125 

plateau effect (except perhaps for the accumulation of genera) suggests that the end of these 126 

accumulations can in no way be considered to be close. A striking feature of the fauna is its 127 

taxonomic/phylogenetic diversity as opposed to simple richness (i.e. the number of species). 128 

The 326 species are distributed among 156 genera, a mean of only 2.1 species per genus. Of 129 

course, the size of a genus is somewhat in the eye of the beholder and in the hands of others 130 

the number of genera might be either reduced (lumpers) or increased (splitters), but we think 131 

that any such effect could only be marginal. Presently, a remarkable 99 genera are 132 

represented by just a single known species on the GBR and a further 33 by just two. Thus, 133 

85% of trematode genera have just one or two species known on the GBR. Despite this, 134 

several genera are rich in GBR fishes. The richest genera are Transversotrema 135 

(Transversotrematidae), Prosorhynchus (Bucephalidae), Stephanostomum (Acanthocolpidae), 136 

Retrovarium (Cryptogonimidae), and Hurleytrematoides (Monorchiidae) with 14, 12, 11, 11 137 

and 11 species recorded from the region, respectively. However, these numbers are relatively 138 

low in comparison with richness in genera of some other coral reef fish parasites. For 139 
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example, there are already 36 species known for the myxosporean genus Ceratomyxa on the 140 

GBR (Gunter et al., 2009; Heiniger and Adlard, 2013). In New Caledonia, studies by J.-L. 141 

Justine have shown that the monogenean genus Pseudorhabdosynochus is exceptionally rich 142 

on serranids, including eight species on a single fish species (Justine, 2007). Certainly 143 

parasite richness is distributed differently for every major group of parasites in coral reef 144 

fishes. 145 

From the data reviewed above, the GBR trematode fauna contains a contrast between 146 

a relatively small number of genera that have undergone significant radiations and the vast 147 

majority that have not. On the basis of our unpublished collections we predict that this overall 148 

pattern will not change with further study. The handful of highly radiated genera have 149 

achieved their richness in different ways. Hurleytrematoides, Prosorhynchus and 150 

Retrovarium have radiated within narrow host ranges, being found only in chaetodontids and 151 

tetraodontids (McNamara and Cribb, 2009; McNamara and Cribb, 2011), serranids (e.g. Bott 152 

et al., 2013), and the closely related haemulids and lutjanids (Miller and Cribb, 2007), 153 

respectively. In contrast, the genus Stephanostomum is known from six families (e.g. Bray 154 

and Cribb, 2003, 2008) and Transversotrema from a remarkable 11 (Hunter et al., 2010; 155 

Hunter and Cribb, 2012; Hunter et al., 2012). These distributions are at least partly explicable 156 

a posteriori in terms of host diet and physiological compatibility, and suggest that speciation 157 

has tracked these resources.  158 

In contrast to the few highly radiated genera, most GBR trematode genera have only 159 

one or two species. Where such genera are composed of multiple species they are often in 160 

hosts that are not closely related, and are often seemingly absent from hosts that would 161 

appear to be suitable. For example, the two reported species of the bivesiculid genus 162 

Bivesicula infect serranids and a pomacentrid (Cribb et al., 1994a). The four species of the 163 

lepocreadiid genus Lepotrema have been found in five species of pomacentrids, two 164 

monacanthids, two balistids and a single blenniid (Bray et al., 1993; Bray and Cribb, 1996, 165 

1998, 2002). In addition, seemingly suitable fishes often lack infections. For example, of 35 166 

pomacentrid species we have examined on the GBR, only one is infected by a bivesiculid 167 

(Cribb et al., 1994a) and only one is infected by a gymnophalloid (Sun et al., 2014). These 168 

apparently haphazard distributional patterns leave us unable to either explain the distributions 169 

or to predict in what other fishes related species might be found in the future.  170 

 171 
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2.3. Host specificity 172 

 A key biological attribute of any parasite is its host specificity. Host specificity of 173 

GBR fish trematodes was reviewed relatively recently by Miller et al. (2011) who showed 174 

that trematode specificity in GBR fishes is overwhelmingly high – either oioxenous (a single 175 

host species) or stenoxenous (taxonomically related host species); euryxenous distributions 176 

(hosts related only by ecology) are exceptional. Indeed, Miller et al. (2011) found this pattern 177 

of oioxenous or stenoxenous specificity to be so strong that they cautioned against the 178 

acceptance of any pattern of euryxenous specificity without corroborating evidence from 179 

molecular analysis. Two subsequent studies have shown that certain transversotrematid and 180 

monorchiid trematodes do indeed have stenoxenous rather than euryxenous specificity as 181 

originally reported (Hunter and Cribb, 2012; Searle et al., 2014). 182 

 Host specificity takes on great importance if the richness of a parasite fauna is being 183 

assessed. Where host specificity is absolutely strict (e.g. most but not all monogeneans), it is 184 

plausible to determine mean richness for known host species and extrapolate it to the 185 

remainder of the fauna. Where a proportion of the species is shared, it becomes important to 186 

understand the rate and nature of sharing. For the trematodes of GBR fishes, the 326 species 187 

have been reported in 814 unique host/parasite combinations at a mean of 2.5 hosts per 188 

species. The number of hosts ranges from 24 for the lecithasterid Thulinia microrchis to only 189 

one known host for 175 species. Perhaps the most important aspect of host-specificity is its 190 

nature when a large number of closely related host taxa are present. The cases of Chaetodon 191 

and Lutjanus (for which 24 and 17 species have been investigated for trematodes on the 192 

GBR, respectively) are instructive in this respect. For the intensively studied monorchiid 193 

genus Hurleytrematoides, no species has been found in more than six species of Chaetodon 194 

(McNamara and Cribb, 2011). For the complex of 21 species of cryptogonimids known from 195 

species of Lutjanus, the cryptogonimid with the lowest known specificity is Varialvus 196 

charadrus, which has been found in eight Lutjanus spp. (Miller et al., 2010b). Thus, even 197 

where multiple closely related potential hosts are available, GBR fish trematodes tend to 198 

infect only a proportion of the available hosts. 199 

 200 

2.4. Endemism 201 

 Despite its great overall richness, the fish fauna of the GBR has remarkably low 202 

endemicity. In the context of his estimate that the fish fauna incorporated 1,500 species, 203 



 8  
 

Allen (2008) noted that only 34 were endemic to the region (2.3%). On this basis it might be 204 

predicted that the parasite fauna would have similarly low endemicity. Although several 205 

species have been shown to have wide distributions in the TIWP on the basis of combined 206 

morphological and molecular studies (e.g. Lo et al., 2001; Chambers and Cribb, 2006; Miller 207 

and Cribb, 2007), according to our records, a remarkable 45% of GBR fish trematodes have 208 

not been reported elsewhere. In addition, there are numerous reports of trematodes from fish 209 

species that occur on the GBR but that we have not detected there. For example, the well-210 

studied lutjanid species Lutjanus fulviflamma is reported to have six species of 211 

Cryptogonimidae on the GBR (Miller and Cribb, 2007, 2008; Miller et al., 2010a; Miller et 212 

al., 2010b), but a further five have been reported from it elsewhere (Hafeezullah and Siddiqi, 213 

1970; Gu and Shen, 1979; Srivastava, 1982; Saoud et al., 1988; Nahhas et al., 1998). In 214 

combination, these data might suggest that trematode endemism for the GBR is much higher 215 

than for their hosts. However, we suspect that the disparity in proportions of endemism 216 

between host and parasite relates significantly to the overall inadequacy of reporting of 217 

trematodes throughout the TIWP. We note in particular that reported endemism is 218 

exceptionally high for aporocotylids (84%) and transversotrematids (80%). In contrast, GBR 219 

Lepocreadiidae have much lower reported endemism (31%). The distinction between these 220 

taxa is consistent with the status of the Aporocotylidae and Transversotrematidae as perhaps 221 

the least well-studied taxa in the TIWP, and the Lepocreadiidae being one of the best-studied. 222 

The system best studied to explore endemism is that of the 20 species of the monorchiid 223 

genus Hurleytrematoides in chaetodontids in the TIWP. In intensive study at six major 224 

localities across the TIWP (McNamara et al., 2012), eight species were found at only one 225 

site, however the 10 found on the GBR were all shared with other locations in the TIWP. 226 

Overall, it is not yet possible to characterise the level of endemism of trematodes of GBR 227 

fishes relative to the remainder of the TIWP except to note that distributions appears to be 228 

highly variable and that the field needs attention. 229 

 230 

2.5. Family level patterns 231 

A handful of trematode families account for well over half of all the richness known 232 

from the GBR. Patterns of distribution and richness vary strikingly between these families 233 

and here we review what we consider five of the best-known families.  234 

 235 
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2.5.1. Lepocreadiidae 236 

The family Lepocreadiidae has the richest known fauna (42 species, 19 genera) of any 237 

family of trematodes on the GBR. This relates to its diversity of host families (15 at present) 238 

and the fact that the family has received continual attention as new taxa have been found 239 

during the last 20 years. The 15 host families represent just two orders, the Perciformes, with 240 

74% of host/parasite records, and the Tetraodontiformes with 26%. It is of interest to note 241 

that the taxa in tetraodontiforms appear to form a clade whereas those of perciforms do not 242 

(Bray and Cribb, 2012). Lepocreadiids are certainly abundant on the reef, with major reef fish 243 

families well represented as hosts. Chaetodontids (16% of records), balistids and acanthurids 244 

(each 16%), pomacentrids and serranids (each 8%), ephippids and lutjanids (each 6%) are the 245 

major host families. In fact, the only host families which are not always so closely associated 246 

with the reef are the Sillaginidae and Carangidae (each 3%) and the Echeneidae (1%). The 247 

factor in common for these fishes is their diet of invertebrates. However, in turn this makes it 248 

surprising that other such fishes (e.g. Lethrinidae and Nemipteridae) appear to lack species of 249 

this family entirely. 250 

 251 

2.5.2. Cryptogonimidae 252 

The family Cryptogonimidae has the second greatest reported richness (38 species, 12 253 

genera) for the GBR. A unique attribute of this family is that, for its richness, it has by far the 254 

smallest host range, being known from only three fish families in the region. Of these, the 255 

Serranidae has a single species, the Haemulidae six and the Lutjanidae a remarkable 31. No 256 

other fish/trematode family in this system approaches such richness. This concentration is not 257 

an artefact of reporting; we are aware of no cryptogonimid species in any other GBR fish 258 

families sampled by us. Concentration of this kind renders targeted collecting far more 259 

feasible than for most taxa. The depth of knowledge of this group relates almost entirely to 260 

the PhD studies of T.L. Miller (e.g. Miller and Cribb, 2007, 2008; Miller et al., 2010a). 261 

Despite the richness characterised to date, we have samples of at least another six species and 262 

five genera yet to be reported. Our targeted sampling of lutjanids on the GBR has neglected 263 

deep-water inhabiting species of the genera Etelis and Pristipomoides associated with coral 264 

reefs throughout the TIWP. At least seven cryptogonimid species have been reported from 265 

these species in other localities in the TIWP, suggesting that the deep-water lutjanids of the 266 

GBR may harbour a similarly rich fauna. Overall there remain at least a further 23 lutjanid 267 
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species (including Caesioninae) known from the GBR (Randall et al., 1997) which are 268 

entirely unsurveyed for cryptogonimids.  269 

 270 

2.5.3. Bucephalidae 271 

Twenty-two species of bucephalids (from five genera) have been reported from fishes 272 

of the GBR, and we know of at least another 40 species that have been collected but not 273 

formally reported. The family occurs only in piscivores which is explained by the apparent 274 

complete restriction of its metacercariae to fishes. On present indications, the Bucephalidae 275 

will ultimately prove to be the richest family in GBR fishes. Current knowledge of 276 

bucephalids from GBR fishes is mainly a result of PhD research by N.J. Bott and colleagues 277 

(Bott and Cribb, 2005b, c, a; Roberts-Thomson and Bott, 2007; Bott and Cribb, 2009; Bott et 278 

al., 2013) who reported bucephalids from six teleost families. The greatest reported 279 

bucephalid richness on the GBR is that in epinepheline serranids, a dominant and speciose 280 

host group. This is especially true of the four species of Plectropomus, which are reported to 281 

harbour 10 prosorhynchine bucephalid species from two genera (Neidhartia and 282 

Prosorhynchus) (Bott et al., 2013). Several further piscivorous families are known, but yet to 283 

be reported, as hosts. A continuing anomaly is that the Lutjanidae, comprising many large 284 

and dominant piscivores on the GBR, does not harbour any bucephalid species despite 285 

extensive investigation. The reasons for this remain unclear, especially when bucephalids 286 

have clearly exploited recent dietary changes to piscivory in families not previously (or not 287 

commonly) associated with bucephalids i.e. apogonids (Bott and Cribb, 2005a), labrid 288 

cleaner fish (Jones et al., 2004) and blenniid mimic cleaner fishes (Roberts-Thomson and 289 

Bott, 2007). Bucephalids from this region appear to be host-specific, at least to the level of 290 

host family. We have examined more than 1,500 GBR fishes from families known to be 291 

infected with bucephalids (globally), and no bucephalid species have been found in more than 292 

one host family.  293 

 294 

2.5.4. Aporocotylidae 295 

The Aporocotylidae, the fish blood flukes, are perhaps the most cryptic of all the 296 

trematode taxa found in marine teleosts. They currently comprise eight genera and 25 species 297 

in GBR fishes. As adults they occur principally in the circulatory system of the host. Most 298 
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species are reported from the heart, but they are also seen in the gills, the body cavity, the 299 

kidney and the cephalic blood vessels. The first reports of an aporocotylid from a GBR fish 300 

were only published in 1989 (Overstreet and Køie, 1989; Overstreet and Thulin, 1989). A 301 

glimpse of the true richness of the group emerged as the result of systematic search in the 302 

PhD studies of M.J. Nolan (Nolan and Cribb, 2004, 2006b, a), which reported 20 species 303 

(from five genera), and alluded to the presence of a further seven species. This work 304 

illustrated that several host groups, most notably the Siganidae, have supported remarkable 305 

radiations of two lineages of species whereas many other families remain seemingly free of 306 

infection, or almost so. However, infections are often difficult to find and are often only 307 

detectable by the discovery of eggs trapped in tissues (Yong et al., 2013). Notably, the 308 

uneven host distribution of aporocotylids remains unexplained because, as for all blood 309 

flukes, transmission in this group is by direct penetration. It is opaque to us as to why some 310 

taxa escape infection from these parasites. 311 

 312 

2.5.5. Transversotrematidae 313 

Transversotrematids are exceptional trematodes, occupying a unique habitat, the 314 

space under the scales of bony fishes. Perhaps because of this, this family seems to have been 315 

sought rarely from tropical marine fishes. When the first three transversotrematids were 316 

reported from the GBR in 1992 (Cribb et al., 1992), only three transversotrematids were 317 

known from marine fishes globally (Witenberg, 1944; Angel, 1969; Manter, 1970). Since 318 

then, reported richness on GBR teleosts has grown to 15 as a result of the PhD study of J.A. 319 

Hunter (Hunter et al., 2010; Hunter and Cribb, 2012; Hunter et al., 2012). The family is 320 

especially rich on lutjanid, mullid and nemipterid fishes. Notably, all but one species belongs 321 

to a single genus, Transversotrema, which is presently the richest single genus known in the 322 

fauna. This richness is completely unparalleled in waters outside Australia but almost 323 

certainly this relates to a failure to seek these distinctive parasites elsewhere. 324 

 325 

2.5.6. Understudied taxa 326 

On the basis of their proportion of the known global trematode fauna, several families 327 

in our data set appear to be strikingly under-represented. Two effects are concealed here. 328 

First, three families, the Derogenidae, the Fellodistomidae and the Lepidapedidae, appear to 329 
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be genuinely depauperate in this region – all three are encountered more frequently in colder 330 

and deeper waters (e.g. Campbell and Bray, 1993; Bray and Campbell, 1995; Bray, 2004). In 331 

contrast, several other families, the Didymozoidae, Haploporidae, Haplosplanchnidae, and 332 

Opecoelidae, are indeed rich in our collections and have simply not received sustained study. 333 

The Didymozoidae is perhaps the most glaring case. On the basis of superficial analysis, we 334 

have collected perhaps 20 species, in contrast to the six species formally reported from the 335 

region. Notably, Yamaguti (1970) reported a remarkable 78 didymozoid species from Hawaii 336 

alone. A high proportion of these are parasites of pelagic fishes (especially scombrids) which 337 

occur in the waters of the GBR and are likely to be found there as well, should they be sought 338 

systematically. 339 

 340 

2.6. Cryptic species and the molecular revolution – a slow burn 341 

 At the time of the last review of the trematodes of GBR fishes (Cribb et al., 1994b), 342 

molecular approaches to taxonomy had yet to be applied to any problems of trematode 343 

identity in the region. Since then the use of molecular data has increased dramatically and is 344 

changing our understanding of many aspects of parasite identity and relationships (Nadler 345 

and Perez-Ponce De Leon, 2011). For trematodes of GBR fishes, molecular data have now 346 

been applied to a wide range of taxa for the testing of identification hypotheses, inference of 347 

phylogenetic relationships, and linking of life-cycle stages. Sequences have been derived 348 

from ribosomal (ITS1, ITS2, 18S, 28S) and mitochondrial (coxI) DNAs.  349 

Molecular data have become essential to the process of distinguishing species that 350 

have limited or no morphological differences for many groups of parasites (e.g. Burger et al., 351 

2007; Jabbar et al., 2013). This cannot, strictly, be said to be the case to date for the 352 

trematodes of GBR fishes. In taxonomy, molecular approaches can be said to be at their most 353 

powerful when they identify combinations of cryptic species which are either entirely 354 

unknown or only suspected. Molecular studies of GBR fish trematodes (based mainly on 355 

ITS2 rDNA sequences but also on coxI sequences) have, by-and-large, confirmed 356 

expectations based on morphological examination rather than revolutionising them (e.g. 357 

Nolan and Cribb, 2004; Chambers and Cribb, 2006; Nolan and Cribb, 2006a; Hall and Cribb, 358 

2008; Cutmore et al., 2010; Downie et al., 2011; Rohner and Cribb, 2013). In part this may 359 

relate to the observation that so much of the diversity of the fauna is at the genus rather than 360 

the species level. Are molecular data thus unimportant? The answer is resoundingly ‘no’ for 361 
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three reasons. First, and perhaps most importantly, morphological, biological (especially host 362 

identity and geographical source) and molecular data now tend to be gathered and considered 363 

almost simultaneously; this approach is at the heart of the so-called “integrative taxonomy” 364 

approach (Dayrat, 2005). Such an approach means that the question of whether the species 365 

being recognised are only recognised because of the availability of molecular data becomes 366 

moot – all the data is used simultaneously (and iteratively) to generate the final taxonomic 367 

hypothesis. Second, the molecular data used for identification can also be used for 368 

phylogenetic analysis (e.g. Bray and Cribb, 2012; Cutmore et al., 2013) and the matching of 369 

life-cycle stages (e.g. Cribb et al., 1998; Lucas et al., 2005; Miller et al., 2009). Third, in 370 

several cases molecular data has indeed produced evidence of genuinely cryptic species in 371 

GBR fishes (Nolan and Cribb, 2006b; Miller et al., 2010a; Hunter and Cribb, 2012; Cribb et 372 

al., 2014; McNamara et al., 2014). The alarming aspect of these latter findings is that the 373 

occurrence of cryptic species remains so unpredictable, even with the benefit of hindsight. 374 

Poulin (2011) showed that the discovery of cryptic species was proportional to the number of 375 

sequences generated, essentially the effort put into finding it, and doubtless there remain 376 

more combinations of cryptic trematode species to be found on the GBR as sequences 377 

accumulate.  378 

 379 

2.7. Location, location 380 

 The GBR is a nearly continuous group of coral reefs extending from just south of the 381 

Tropic of Capricorn and merging north to the reefs of the Coral Sea. The fish composition of 382 

the GBR remains similar along its length; richness increases to the north (Russell, 1983), but 383 

many species occur essentially everywhere. How are parasites distributed in this huge 384 

potential habitat? Our evidence to answer this question is manifestly inadequate as we have 385 

only sampled in any detail at two localities, Heron Island in the south and Lizard Island in the 386 

north. Of the total of 326 species reported from the GBR, just 66 (20%) have been reported 387 

from both sites, although many more remain to be formally reported from the second site or 388 

have not been sought there in the appropriate hosts. There is, however, a significant subset of 389 

species for which there is positive evidence (from substantial collecting) of restricted 390 

distributions. For example, Phyllodistomum hoggettae and Lepocreadium oyabitcha are both 391 

known only from Lizard Island (Bray and Cribb, 1998; Ho et al., 2014) despite the 392 

examination of a large sample of their host species at Heron Island. Even more strikingly, 393 
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Hunter and Cribb (2012) and Diaz et al. (2013) showed that, in some fish species, species of 394 

Faustulidae and Transversotrematidae in the south are replaced by congeners in the north. In 395 

both of these cases the two species were readily distinguished by morphology. It remains to 396 

be seen whether cryptic variation related to geographic locality on the GBR will prove 397 

important.  398 

 Overall, our data set is too limited to allow comprehensive analysis of the nature of 399 

geographical distribution of trematodes of fishes within the GBR. Importantly, we cannot 400 

identify whether differences between the two main collecting sites relate to major paradigms 401 

such as latitudinal gradients (Kamiya et al., 2014) or glaciation refugia (van Oppen et al., 402 

2011), or simply to sampling bias that would disappear with more extensive collecting along 403 

the length of the GBR. We can certainly conclude, however, that sampling at a single site is 404 

inadequate to develop a general understanding of the richness of the whole region. 405 

 406 

3. A richness prediction = Known + Collected + Unknown 407 

 Predictions of richness often invoke three categories of knowledge of species. Those 408 

that are known and characterised (here 326 species), those that are known (collected) but not 409 

characterised, and those that have not yet been detected on any level but are suspected to be 410 

present. How does our knowledge for GBR fish trematodes relate to the two categories of 411 

uncharacterised species?  412 

 413 

3.1. Collected but uncharacterised richness 414 

The first category, collected but uncharacterised species, might be expected to be 415 

simple to estimate because the specimens already exist in our collection. This is not the case. 416 

Until specimens are stained and mounted, ideally sequenced, and compared carefully with 417 

other relevant material, we cannot be certain about how many species are in the collection. In 418 

essence, if we had managed to analyse the specimens to that extent we could have written the 419 

formal accounts of the species. Thus, for only those few taxa that are under active 420 

consideration can we make reliable predictions of the level of uncharacterised richness in our 421 

collection. Thus for the Apocreadiidae, six species have been characterised but we are aware 422 

of a further 12 and for the Bivesiculidae we are confident that the three known species will 423 

rise to eight on the basis of existing collections. Not all taxa will increase so impressively; we 424 
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are aware of no further species of Enenteridae, Gorgocephalidae, Hirudinellidae, 425 

Sclerodistomidae or several other families. The greatest difficulty arises in the larger, most 426 

poorly studied taxa (e.g. Bucephalidae, Didymozoidae, Haploporidae, Monorchiidae and 427 

Opecoelidae). For these taxa the projections of uncharacterised species held in our collection 428 

can only be considered educated guesses based on preliminary sorting and sequencing. In 429 

total, our estimates of held but uncharacterised species add an extra 240 GBR trematode 430 

species (Table 1). This number suggests that we have characterised aproximately 58% of the 431 

species known to us. 432 

Published reports of the 326 GBR trematode species have now been made from 265 433 

fish species, a rate of 1.23 species per fish species. Our complete collection of 566 trematode 434 

species (published + unpublished) have been from 504 species, a rate of 1.12 per fish species. 435 

Given that 28% of the fish species that we have examined have been sampled no more than 436 

twice, we conclude that there is significantly more richness to be identified in these species 437 

than we have seen to date. Thus, for the fishes that we have examined to date a mean richness 438 

of 1.2 trematode species per fish seems conservative. This rate of richness would suggest that 439 

the fishes that have been examined (at least to some extent) harbour a minimum of 600 440 

species.  441 

 442 

3.2. Unseen richness 443 

 How many trematode species in GBR fishes have never been knowingly seen by us or 444 

anyone else? Hoese et al. (2006) stated that the total fish richness of the GBR stands at 1,625 445 

species. If we suppose that approximately 100 of these are elasmobranchs (and thus beyond 446 

our remit), then perhaps there are approximately 1,000 GBR fish species awaiting assessment 447 

for their trematode fauna. The fact that we can begin to use such round numbers hints at the 448 

level of inexactitude in the calculations in the remainder of this analysis. What trematodes 449 

can be expected in these 1,000 fish species?  450 

 A few of the unexamined 1,000 fish are species that we see but have never attempted 451 

to collect. However, after 25 years of consistent collecting by a range of methods it becomes 452 

increasingly unusual for us to collect previously unexplored fish species. Why is this when 453 

there are evidently 1,000 species yet to be examined? The explanation lies in a combination 454 

of effects. Several fishes have special conservation protection (e.g. Queensland groper, 455 

Barramundi cod, Hump-Headed Maori wrasse and Steep-head parrot fish). Although we are 456 
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certainly interested to understand their parasites, we see no special need to seek to sample 457 

these species. A second category is fish that are simply rare at the sites that we study (Heron 458 

and Lizard Islands). For example, we have only ever seen a single individual of Chaetodon 459 

reticulatus on the GBR and we did not examine it; we see no prospect that we will ever 460 

understand its parasites on the GBR (whereas it is abundant and has been examined in depth 461 

in French Polynesia). The third and most important category is fishes that are not rare but are 462 

difficult to collect. This category has at least three sub-categories. A number of large taxa are 463 

simply difficult and sometimes even dangerous to collect. Preeminent among these are the 464 

moray eels (Muraenidae) of which there are at least 29 species known for the GBR (Randall 465 

et al., 1997). From examination of just 13 individuals of six species of this family on the 466 

GBR we know that they have a rich and distinctive trematode fauna, but their aggression and 467 

cryptic habits render them especially poorly known and difficult to collect. In a separate sub-468 

category, there are large numbers of small species (especially gobiids) that are difficult to 469 

collect because they live deep amongst coral, in crevices, sand and rubble. Such species are 470 

typically collected by ichthyologists by the use of rotenone fish poison at ichthyocide 471 

stations. This chemical kills and drives fishes from their habitat, allowing them to be 472 

collected with relative ease. Species such as the serranid Pseudogramma polyacanthum are 473 

often collected abundantly at rotenone stations but J.E. Randall, the doyen of Pacific 474 

ichthyologists, comments that he has never observed it alive (Randall et al., 1997). We have 475 

never seen this species on the GBR but we have examined specimens that were collected at 476 

rotenone stations elsewhere in the tropical Pacific Ocean and have found them to be infected 477 

with interesting trematodes. However, the use of rotenone is not permitted on the GBR; we 478 

wonder how the parasites of such species will ever be characterised while a prohibition on the 479 

use of this effective technique (Robertson and Smith-Vaniz, 2008) remains in place. Finally, 480 

those fish species that are found below our effective SCUBA diving [define or insert 481 

descriptive words] limit of approximately 20 metres remain inaccessible to us. An important 482 

part of this deeper water fauna is the inter-reef fauna — fishes typically only collectable by 483 

trawling. We note that of the 172 species of bony fishes listed in the report on seabed 484 

biodiversity on the continental shelf of the GBR World Heritage Area (Pitcher et al., 2007), 485 

only 10 have been examined by us on coral reefs. 486 

 Thus, the unexamined fishes are a complex mix of rare and hard to collect taxa. The 487 

many small species can be expected to have low trematode richness, but there remain many 488 
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large species to be examined as well. We can predict that the inter-reef fishes will have a 489 

fauna quite distinct from that of the more strongly reef-associated species. 490 

 491 

3.3. An estimate of GBR fish trematode richness 492 

  Our final richness estimate comprises two key components – one in which we are 493 

confident, and one of which we are quite uncertain. We think that richness in the fishes 494 

already studied to some extent is certain to reach 600 species, and perhaps as high as 800 495 

species if sources of richness such as cryptic species and geographical localisation are greater 496 

than presently understood. Richness in the 1,000 unexamined fish species is far more difficult 497 

to predict. We think it unlikely that mean richness in these fishes will equal that of those 498 

already examined because, on average, they are smaller and rarer and these characteristics are 499 

important drivers of parasite richness (Kamiya et al., 2014). We thus suggest that richness per 500 

species for these fishes will be in the range of 0.5–1.0. In combination, these figures (600–501 

800 + 500–1,000) suggest that the fauna might comprise 1,100–1,800 trematode species. 502 

Although there remains great scope for error in these predictions, it seems unlikely to us that 503 

the fauna comprises fewer than 1,000 species or more than 2,000. Notably, this range is 504 

below the 2,270 suggested by Cribb et al. (1994b). 505 

 Calculation of mean trematode richness for the GBR species has implications for the 506 

total mean richness of 20 (all parasites) and 10 (Metazoa only) species per fish species 507 

invoked by Rohde (1976) and Justine (2010), respectively, for coral reef fishes. In our 508 

experience, trematodes are one of the “big four” in terms of parasite richness in GBR bony 509 

fishes. The other highly abundant and rich taxa are the Copepoda, the Monogenea and the 510 

Myxozoa. In our experience, other taxa present as adult parasites (acanthocephalans, 511 

cestodes, isopods, leeches and nematodes) are relatively minor in their abundance and 512 

richness. Given that we find that GBR fishes have a mean trematode richness of ~ 1.2 513 

species, we find ourselves with reservations that the remaining parasite taxa contribute, on 514 

average, a further eight to nine metazoan species (Justine, 2010) or 18–19 metazoans and 515 

protists (Rohde, 1976) for every fish species.  516 

 517 

4. The task ahead 518 



 18  
 

 On the basis of the estimates made above, perhaps 19–30% of the GBR reef fish 519 

trematode fauna has now been characterised. This leaves a substantial task, one that might 520 

take 60–120 years to complete at the present rate of progress depending on how many species 521 

are really there to be found. Given the size of the task it is worth considering the value of the 522 

exercise. 523 

 524 

4.1. Should we even try? 525 

 As species represent the basic unit of evolutionary biology and indeed of natural 526 

history, we think that it is critical to know what species of trematodes (and indeed all the 527 

other groups of parasites) occur on the GBR as a basis for scientific enquiry. We support the 528 

standard argument that naming the species is a first critical step in characterising any 529 

biological system, although we do appreciate that it is possible to do significant work without 530 

having names on all taxa. From our perspective, we therefore see no reason not to 531 

characterise this fauna and every reason to do so. However, as we pull back the view of 532 

Google Earth™ from Heron or Lizard Island on the GBR to first see the rest of the GBR, and 533 

then progressively the reefs of the rest of the TIWP, we are very much aware of the size of 534 

the task of characterising the parasite fauna of all the major sites in this region. In our view, 535 

that is presently an unarguably impossible task. Whether it is justifiable or not becomes moot 536 

when it is first impossible. We therefore make a case here for a continued concentration on 537 

the characterisation of the parasite fauna of the GBR with the intention of achieving some 538 

kind of completion.  539 

Our case has two components. First, we think that the GBR offers the best prospects 540 

for achieving something close to completion, and as such forming a basis for comparison 541 

with other sites in the TIWP. Australia, by way of the GBR, is one of 13 TIWP nations with a 542 

bony fish fauna of over 1,000 coral reef species (Allen, 2008). Of these 13, probably only 543 

Japan also has the scientific infrastructure to be able to aspire to comprehensive study its 544 

parasitic fauna. In terms of the extent to which other sites have been characterised, the only 545 

other coral reef sites that can be considered at all well-known are Hawaii and southern Japan. 546 

The extent to which the fauna of Hawaii is characterised is especially due to the work of H. 547 

Manter, W.E. Martin, M. Pritchard (née Hanson) and particularly S. Yamaguti. However, the 548 

work on this fauna was published almost entirely between 1955 (Hanson, 1955) and 1970 549 

(Yamaguti, 1970). As a result none of the species have been characterised by molecular data, 550 
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which is now a prerequisite for comparison of species occurring over wide ranges. The fauna 551 

of Japan, including that of fishes of the more southerly coral reefs, has also been worked on 552 

appreciably, again by S. Yamaguti, but also by S. Kamegai, M. Machida, K. Ogawa, Y. 553 

Ozaki, T. Shimazu and others. This fauna is not as clearly a fauna of coral reefs as that of the 554 

GBR and also awaits the application of molecular approaches.  555 

The second argument is that we should attempt to characterise the fauna before it 556 

disappears. Although some authors are relatively positive about the prospects for the 557 

description of the world fauna and flora (e.g. Costello et al., 2013), coral reefs do appear to be 558 

especially threatened by environmental change. Coral reefs face threats globally from coral 559 

bleaching, ocean acidification, eutrophication, over-fishing, crown-of-thorns starfish, storms 560 

and a range of other threats (Lewis et al., 2009; Munday et al., 2010; e.g. Kayal et al., 2012). 561 

We note that despite this, the GBR remains one of the healthiest and best protected of the 562 

world’s reefs and thus remains an excellent study site. It is possible that the fauna that we 563 

find so fascinating, ultimately dependent on the existence of healthy coral reefs, is threatened 564 

by large-scale extinction locally and globally.  565 

 566 

5. How to get there from here 567 

 If we accept that characterising this fauna has value, then there are a number of issues 568 

to be considered in attacking the task. Here we review issues affecting the implementation of 569 

an effective approach. 570 

 571 

5.1. Every fish species? 572 

First we can consider whether we need to examine every fish species. As discussed 573 

above, trematode specificity in GBR fishes is overwhelmingly high. This means that 574 

comprehensive surveying for trematodes requires examination of, effectively, all the fish 575 

species present. For example, possibly the most thoroughly collected taxon in our dataset is 576 

the butterflyfishes (family Chaetodontidae). We have reported 23 trematodes from 35 species 577 

of this family and are aware of at least 10 more in our collection. These trematode species are 578 

almost all shared by at least two chaetodontid species and the maximum number found in any 579 

one host species is nine (Chaetodon ulietensis). Such understanding can only be reached by 580 

comprehensive sampling, and we thus see no case for selectively excluding fish species from 581 
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analysis. We do see, however, a case to be made that the parasite fauna of representatives of 582 

the most characteristic and prominent fishes on the reef should be especially well 583 

characterised as a priority.  584 

 585 

5.2. Prevalence - how many fish? 586 

 No GBR fish that we have sampled at least 20 times has been infected with the same 587 

trematode species in every individual. Thus, in the search for trematodes and a deeper 588 

understanding of their distribution, it is necessary to dissect multiple host individuals, but 589 

how many? The issue is of importance because there are matters of efficiency, expense and 590 

ethics. Fig. 2 shows randomised species accumulation curves and species richness predictors 591 

for real data for seven diverse GBR fish species (Chaetodontidae: Chaetodon lunulatus; 592 

Labridae: Thalassoma lunare; Lutjanidae: Lutjanus carponotatus; Nemipteridae: Scolopsis 593 

bilineatus; Pomacentridae: Acanthochromis polyacanthus; Siganidae: Siganus lineatus), each 594 

sampled 30 times at Heron Island. A sample of 30 gives, statistically, a 95% probability of 595 

finding any parasite present in the population at a prevalence of 10% or greater (Post and 596 

Millest, 1991). Two observations emerge from these curves. First, the overall combined 597 

observed accumulation curve has begun to plateau and to converge with the two richness 598 

predictors, suggesting that for these fish we have collected most, but perhaps not quite all, of 599 

the trematode species present. The small upward trend evident in two of the curves relates to 600 

the fact that the data set contains a number of singleton and doubleton infections. The 601 

richness predictors effectively treat these as evidence that there may be undiscovered richness 602 

in the system. Second, the effect of the law of diminishing returns is severe. On average, after 603 

just two fish have been examined, > 50% of the actual and predicted richness has been 604 

discovered. This pattern generates a clear tension in approaches to collecting. Examination of 605 

a small number of host individuals will find most of the trematode species; however, a much 606 

larger number is required before all of them are found. 607 

From the accumulation curves described above we can predict that, at least for these 608 

fish, and probably for most, a sample size of 30 is effective in characterising the trematode 609 

fauna of GBR fishes at individual localities (providing that there are no dramatic effects from 610 

ontogeny, local distribution or season – all entirely possible and all little studied). Infections 611 

that are not detected because they are rare remain a distinct problem. An example comes from 612 

a faustulid parasite, Parayamagutia ostracionis, of the boxfish Ostracion cubicus. We have 613 
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examined a large sample of these fishes on the GBR (91), exploring a range of parasitological 614 

questions. The first of these was examined in 1986 and produced a single individual of P. 615 

ostracionis. In a total of 90 further O. cubicus examined by us, we have seen only one more 616 

infection for an overall prevalence of 2.2%. We conclude that this species is a valid parasite 617 

of O. cubicus which, for reasons undetectable to us, is strikingly rare. Scarcity of this kind is 618 

itself not rare in biology (Jones et al., 2002; Magurran and Henderson, 2003), but for our 619 

purposes it poses an essentially insoluble problem.  620 

If indeed it is necessary to examine 30 individuals of each fish from at least two sites 621 

to get a comprehensive understanding of the fauna, then a further 60,000 fishes (many hard to 622 

get) remain to be examined. Sixty thousand fish, at an optimistic rate of an hour per fish to 623 

collect and dissect, translates into a figure of 7,500 field days and much more time in the 624 

laboratory. 625 

 626 

5.3. What should be done – some priorities 627 

If we need to examine another 60,000 fish to characterise the GBR fish trematode fauna 628 

then there is certainly room to identify priorities. We think that the best progress might be 629 

characterised by  630 

i) Maintaining continued attention on the best studied families (e.g. 631 

Aporocotylidae, Bucephalidae, Cryptogonimidae, Lepocreadiidae and 632 

Transversotrematidae) to create a comprehensive basis for comparison with 633 

other localities. 634 

ii) Characterising comprehensively the parasite faunas of key fish species such as 635 

the Coral trout (Plectropomus leopardus), the Red-throat emperor (Lethrinus 636 

chrysostomus), the Moon wrasse (Thalassoma lunare) and other species that 637 

have distinctive parasite faunas.  638 

iii) Attempting to be consistent in accompanying new species descriptions and 639 

reports with molecular data and “back-filling” for those already reported 640 

without such data. 641 

iv) Improving characterisation of the level of similarity between different areas of 642 

the GBR. 643 

v) Making a realistic attempt to explore the importance of small fishes in the 644 

richness of GBR fish trematodes. 645 
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vi) Making a realistic attempt to sample the neglected inter-reef fauna. 646 

vii) Improving the availability of summary information regarding the fauna so as to 647 

make the work that has been done more accessible and valuable to others.  648 

Seven priorities is perhaps already too many in the context of the workforce available 649 

to tackle these tasks, but it is difficult to distinguish between them in terms of importance. 650 

We note with interest, that priorities for the study of parasite faunas in different parts of the 651 

world may vary. Perez-Ponce de Leon and Choudhury (2010) make a convincing case that 652 

the end is in sight for the characterisation of the helminth fauna of Mexican freshwater fish. 653 

In that context they argue that, for that fauna, current priorities should be the least studied fish 654 

(whereas here almost no species can be considered fully characterised) and the search for 655 

cryptic species (which is here considered important but not a dominant issue). 656 

 657 

6. Conclusions - beyond the numbers 658 

 At the head of this review we stated that our goal was to work towards the 659 

biodiversity goal of “understanding the system”. Although we have shown that there remains 660 

a formidable task to characterise all the species in the system, we do not downplay the 661 

progress that has been made. We now have a reasonable understanding of the kinds of 662 

trematodes that are likely to be found in the most frequently encountered fishes of the GBR. 663 

We also have a broad understanding of patterns of host specificity – largely we know what 664 

sorts of trematode families will be found in what sorts of fish taxa, even if the details still 665 

have the capacity to surprise us. Indeed, some interesting patterns have been noted in this 666 

review, e.g. the apparent lack of aporocotylids in many reef fish species, and the 667 

unpredictable distribution of cryptic trematode species. The most glaring gap in our 668 

understanding of this system is knowledge of life-cycles. These parasites all have at least two 669 

hosts, most three and some four. Given the profusion of animals available for involvement in 670 

these cycles, the task of elucidating them in any detail is considerably more complex than that 671 

of characterising the adults. This perhaps explains why there are still only two completely 672 

elucidated life-cycles for trematodes parasitic in GBR fishes (Pearson, 1968; Rohde, 1973) 673 

although a range of life-cycle connections have been made (Cribb et al., 1996; Cribb et al., 674 

1998; Lucas et al., 2005), especially by the use of molecular approaches. This field perhaps 675 

offers the single greatest challenge for the future.  676 
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 The task of characterising the biodiversity of the parasites of coral reef fishes is a 677 

daunting yet fascinating one. In 25 years of study, knowledge has evolved from a complete 678 

absence of understanding of what to expect to a point where the data now create fascinating 679 

biological patterns. After many years in this field we have come to recognise that the two 680 

finest moments are when we can look at a trematode and say either “I have no idea what that 681 

is!”, or, “I know exactly what that is!” The balance of experience is slowly shifting from the 682 

former to the latter, but the former is still very much there to be had! 683 

(Board, 2014) 684 
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Figure legends 1009 

Table 1. Numbers of trematode species reported and collected but not reported from Great 1010 

Barrier Reef (GBR), Australia, fishes. Estimates for known global richness of trematode 1011 

families predominantly or significantly in marine actinopterygian fishes based on counts in 1012 

the World Register of Marine Species (2014) and our records. 1013 

Family 

Reported GBR 

genera 

Reported GBR 

species 

Collected GBR 

species 

Reported global 

species 

% World 

fauna 

Acanthocolpidae 5 15 1 199 7.5 

Accacoeliidae 0 0 1 27 0.0 

Aephnidiogenidae 3 4 1 21 19.0 

Apocreadiidae 4 6 12 87 6.9 

Aporocotylidae 8 25 15 118 21.2 

Aspidogastridae 1 1 0 10 10.0 

Atractotrematidae 2 2 0 2 100.0 

Azygiidae 0 0 0 42 0.0 

Bathycotylidae 0 0 0 2 0.0 

Bivesiculidae 3 4 5 27 14.8 

Botulisaccidae 0 0 0 1 0.0 

Bucephalidae 5 23 40 380 6.1 

Cladorchiidae 0 0 1 4 0.0 

Cryptogonimidae 12 38 6 220 17.3 

Derogenidae 1 3 1 132 2.3 

Deropristidae 0 0 1 6 0.0 

Dictysarcidae 0 0 0 8 0.0 

Didymozoidae 5 6 20 280 2.1 

Enenteridae 2 4 0 32 12.5 

Faustulidae 4 13 10 77 16.9 

Fellodistomidae 3 3 3 142 2.1 

Gorgocephalidae 1 2 0 3 66.7 

Gorgoderidae 2 3 2 85 3.5 

Gyliauchenidae 6 10 16 42 23.8 

Gymnophalloidea (incertae 

sedis) 

1 1 1 4 25.0 

Haploporidae 2 3 15 113 1.8 

Haplosplanchnidae 2 2 11 47 4.3 

Hemiuridae 10 15 5 500 3.0 

Hirudinellidae 1 1 0 5 20.0 

Lecithasteridae 12 18 5 149 12.1 

Lepidapedidae 2 4 0 99 2.0 

Lepocreadiidae 19 42 8 270 15.6 

Mesometridae 0 0 1 9 0.0 

Microscaphidiidae 1 1 6 41 2.4 

Monorchiidae 9 23 13 255 9.0 

Opecoelidae 19 27 30 680 4.0 

Opistholebetidae 2 3 0 26 11.5 

Sclerodistomidae 1 1 0 43 2.3 

Sclerodistomoididae 0 0 0 1 0.0 

Styphlotrematidae 0 0 0 1 0.0 

Syncoeliidae 0 0 0 11 0.0 

Tandanicolidae 0 0 0 12 0.0 

Transversotrematidae 2 15 3 25 60.0 

Zoogonidae 6 8 7 123 4.9 

http://www.sciencedirect.com/science/article/pii/S0020751914001969#b0500
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Family 

Reported GBR 

genera 

Reported GBR 

species 

Collected GBR 

species 

Reported global 

species 

% World 

fauna 

Total 156 326 240 4361 7.5 

% World fauna, GBR reported species as a percentage of known world fauna. 1014 

 1015 

Fig. 1. The study of trematodes from fishes of the Great Barrier Reef, Australia, from 1910. 1016 

The International Congress of Parasitology workshop on the parasites of the Great Barrier 1017 

Reef was held in 1988. (A) Accumulation of species; (B) accumulation of genera; (C) 1018 

accumulation of unique host/parasite combinations.  1019 

 1020 



 32  
 

Fig. 2. Combined randomised (1,000 randomisations) accumulation of species richness 1021 

(actual and predicted) of digenean trematodes in 30 individuals each of seven species (see 1022 

Section 5.2) of Great Barrier Reef fishes at Heron Island, Australia.  ● Observed, ○  1023 

 1024 


