3,855 research outputs found

    The Jet in the Galactic Center: An Ideal Laboratory for Magnetohydrodynamics and General Relativity

    Full text link
    In this paper we review and discuss some of the intriguing properties of the Galactic Center supermassive black hole candidate Sgr A*. Of all possible black hole sources, the event horizon of Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.Comment: invited talk to appear in "Jets on All Scales", IAU Symposium 275, G.E. Romero, R.A. Sunyaev & T. Belloni, eds., Cambridge University Press, 9 pages, LaTex, 4 figure

    Imaging black holes: past, present and future

    Full text link
    This paper briefly reviews past, current, and future efforts to image black holes in the radio regime. Black holes seem like mystical objects, but they are an integral part of current astrophysics and are at the center of attempts to unify quantum physics and general relativity. Yet, nobody has ever seen a black hole. What do they look like? Initially, this question seemed more of an academic nature. However, this has changed over the past two decades. Observations and theoretical considerations suggest that the supermassive black hole, Sgr A*, in the center of our Milky Way is surrounded by a compact, foggy emission region radiating at and above 230 GHz. It has been predicted that the event horizon of Sgr A* should cast its shadow onto that emission region, which could be detectable with a global VLBI array of radio telescopes. In contrast to earlier pictures of black holes, that dark feature is not supposed to be due to a hole in the accretion flow, but would represent a true negative image of the event horizon. Currently, the global Event Horizon Telescope consortium is attempting to make such an image. In the future those images could be improved by adding more telescopes to the array, in particular at high sites in Africa. Ultimately, a space array at THz frequencies, the Event Horizon Imager, could produce much more detailed images of black holes. In combination with numerical simulations and precise measurements of the orbits of stars - ideally also of pulsars - these images will allow us to study black holes with unprecedented precision.Comment: 10 pages, 3 figures, invited review, http://iopscience.iop.org/article/10.1088/1742-6596/942/1/01200

    A jet model for the broadband spectrum of XTE J1118+480: Synchrotron emission from radio to X-rays in the Low/Hard spectral state

    Full text link
    Observations have revealed strong evidence for powerful jets in the Low/Hard states of black hole candidate X-ray binaries. Correlations, both temporal and spectral, between the radio -- infrared and X-ray bands suggest that jet synchrotron as well as inverse Compton emission could also be significantly contributing at higher frequencies. We show here that, for reasonable assumptions about the jet physical parameters, the broadband spectrum from radio through X-rays can be almost entirely fit by synchrotron emission. We explore a relatively simple model for a relativistic, adiabatically expanding jet combined with a truncated thermal disk conjoined by an ADAF, in the context of the recently discovered black hole binary XTE J1118+480. In particular, the X-ray power-law emission can be explained as optically thin synchrotron emission from a shock acceleration region in the innermost part of the jet, with a cutoff determined by cooling losses. For synchrotron cooling-limited particle acceleration, the spectral cutoff is a function only of dimensionless plasma parameters and thus should be around a ``canonical'' value for sources with similar plasma properties. It is therefore possible that non-thermal jet emission is important for XTE J1118+480 and possibly other X-ray binaries in the Low/Hard state.Comment: 4 pages, 1 figure, accepted for A&A Letters, reformatted and shortened to fit page limit, discusses "canonical 100 keV cutoff" and some minor changes, also available at http://www.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#j111
    corecore