142 research outputs found
Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod
Current optical detection schemes for single molecules require light
absorption, either to produce fluorescence or direct absorption signals. This
severely limits the range of molecules that can be detected, because most
molecules are purely refractive. Metal nanoparticles or dielectric resonators
detect non-absorbing molecules by a resonance shift in response to a local
perturbation of the refractive index, but neither has reached single-protein
sensitivity. The most sensitive plasmon sensors to date detect single molecules
only when the plasmon shift is amplified by a highly polarizable label or by a
localized precipitation reaction on the particle's surface. Without
amplification, the sensitivity only allows for the statistical detection of
single molecules. Here we demonstrate plasmonic detection of single molecules
in realtime, without the need for labeling or amplification. We monitor the
plasmon resonance of a single gold nanorod with a sensitive photothermal assay
and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art
plasmon sensors. We find that the sensitivity of the sensor is intrinsically
limited due to spectral diffusion of the SPR. We believe this is the first
optical technique that detects single molecules purely by their refractive
index, without any need for photon absorption by the molecule. The small size,
bio-compatibility and straightforward surface chemistry of gold nanorods may
open the way to the selective and local detection of purely refractive proteins
in live cells
Analysis of a microscopic stochastic model of microtubule dynamic instability
A novel theoretical model of dynamic instability of a system of linear (1D)
microtubules (MTs) in a bounded domain is introduced for studying the role of a
cell edge in vivo and analyzing the effect of competition for a limited amount
of tubulin. The model differs from earlier models in that the evolution of MTs
is based on the rates of single unit (e.g., a heterodimer per protofilament)
transformations, in contrast to postulating effective rates/frequencies of
larger-scale changes, extracted, e.g., from the length history plots of MTs.
Spontaneous GTP hydrolysis with finite rate after polymerization is assumed,
and theoretical estimates of an effective catastrophe frequency as well as
other parameters characterizing MT length distributions and cap size are
derived. We implement a simple cap model which does not include vectorial
hydrolysis. We demonstrate that our theoretical predictions, such as steady
state concentration of free tubulin, and parameters of MT length distributions,
are in agreement with the numerical simulations. The present model establishes
a quantitative link between microscopic parameters governing the dynamics of
MTs and macroscopic characteristics of MTs in a closed system. Lastly, we use a
computational Monte Carlo model to provide an explanation for non-exponential
MT length distributions observed in experiments. In particular, we show that
appearance of such non-exponential distributions in the experiments can occur
because the true steady state has not been reached, and/or due to the presence
of a cell edge.Comment: 14 pages, 7 figure
Mechanochemical basis of protein degradation by a double-ring AAA+ machine
Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ClpA enzyme from Escherichia coli, in complex with the ClpP peptidase, mechanically degrades proteins. We demonstrate that ClpA unfolds some protein substrates substantially faster than does the single-ring ClpX enzyme, which also degrades substrates in collaboration with ClpP. We find that ClpA is a slower polypeptide translocase and that it moves in physical steps that are smaller and more regular than steps taken by ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Grant AI-16892
Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas
B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis
Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex
The yeast class V myosin Myo4p moves processively in vivo in a cargo-dependent manner following formation of a double-headed complex with the adapter protein She3p and the mRNA-binding protein She2p
Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition
Microtubule dynamics is largely influenced by nucleotide hydrolysis and the
resultant tubulin configuration changes. The GTP cap model has been proposed to
interpret the stabilizing mechanism of microtubule growth from the view of
hydrolysis effects. Besides, the microtubule growth involves the closure of a
curved sheet at its growing end. The curvature conversion also helps to
stabilize the successive growth, and the curved sheet is referred to as the
conformational cap. However, there still lacks theoretical investigation on the
mechanical-chemical coupling growth process of microtubules. In this paper, we
study the growth mechanisms of microtubules by using a coarse-grained molecular
method. Firstly, the closure process involving a sheet-to-tube transition is
simulated. The results verify the stabilizing effect of the sheet structure,
and the minimum conformational cap length that can stabilize the growth is
demonstrated to be two dimers. Then, we show that the conformational cap can
function independently of the GTP cap, signifying the pivotal role of
mechanical factors. Furthermore, based on our theoretical results, we describe
a Tetris-like growth style of microtubules: the stochastic tubulin assembly is
regulated by energy and harmonized with the seam zipping such that the sheet
keeps a practically constant length during growth.Comment: 23 pages, 7 figures. 2 supporting movies have not been uploaded due
to the file type restriction
The elegans of spindle assembly
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
- …