41 research outputs found

    Gold Catalysed Reactions of Propargylic Alcohols

    Get PDF
    Propargylic alcohols are easily accessed through the reaction of alkynes with aldehydes and ketones. The 1,3-isomerisation of propargylic alcohols to enones is known as the Meyer-Schuster rearrangement. We have demonstrated efficient room temperature reaction conditions for the Au-catalysed Meyer-Schuster rearrangement (>30 examples) of a wide array of secondary and tertiary propargylic alcohols to the corresponding enones in generally excellent yields and with high E-selectivity. Primary propargylic alcohols rearrange to give highly reactive terminal enones, which can undergo conjugate addition reactions with nucleophiles to access ÎČ-substituted products through suitable one-pot procedures. Diethyl acetal substituted propargylic alcohols can be used to access synthetically useful 3-alkoxy furans in the presence of Au in high yield. The use of silver as a catalyst promotes substitution of the propargylic alcohol with various oxygen, carbon and nitrogen nucleophiles. ÎČ-Hydroxyketones can be accessed via a Au-catalysed hydration, employing phenols or acidic alcohols as the reaction additive

    Ultra-short echo time cardiovascular magnetic resonance of atherosclerotic carotid plaque.

    Get PDF
    BACKGROUND: Multi-contrast weighted cardiovascular magnetic resonance (CMR) allows detailed plaque characterisation and assessment of plaque vulnerability. The aim of this preliminary study was to show the potential of Ultra-short Echo Time (UTE) subtraction MR in detecting calcification. METHODS: 14 ex-vivo human carotid arteries were scanned using CMR and CT, prior to histological slide preparation. Two images were acquired using a double-echo 3D UTE pulse, one with a long TE and the second with an ultra-short TE, with the same TR. An UTE subtraction (DeltaUTE) image containing only ultra-short T2 (and T2*) signals was obtained by post-processing subtraction of the 2 UTE images. The DeltaUTE image was compared to the conventional 3D T1-weighted sequence and CT scan of the carotid arteries. RESULTS: In atheromatous carotid arteries, there was a 71% agreement between the high signal intensity areas on DeltaUTE images and CT scan. The same areas were represented as low signal intensity on T1W and areas of void on histology, indicating focal calcification. However, in 15% of all the scans there were some incongruent regions of high intensity on DeltaUTE that did not correspond with a high intensity signal on CT, and histology confirmed the absence of calcification. CONCLUSIONS: We have demonstrated that the UTE sequence has potential to identify calcified plaque. Further work is needed to fully understand the UTE findings

    Gold- and Silver-Catalyzed Reactions of Propargylic Alcohols in the Presence of Protic Additives

    Get PDF
    A wide range of primary, secondary and tertiary propargylic alcohols undergo a Meyer–Schuster rearrangement to give enones at room temperature in the presence of a gold(I) catalyst and small quantities of MeOH or 4-methoxyphenylboronic acid. The syntheses of the enone natural products isoegomaketone and daphenone were achieved using this reaction as the key step. The rearrangement of primary propargylic alcohols can readily be combined in a one-pot procedure with the addition of a nucleophile to the resulting terminal enone, to give ÎČ-aryl, ÎČ-alkoxy, ÎČ-amino or ÎČ-sulfido ketones. Propargylic alcohols bearing an adjacent electron-rich aryl group can also undergo silver-catalyzed substitution of the alcohol with oxygen, nitrogen and carbon nucleophiles. This latter reaction was initially observed with a batch of gold catalyst that was probably contaminated with small quantities of silver salt

    Gold catalysed synthesis of 3-alkoxyfurans at room temperature

    Get PDF
    Synthetically important 3-alkoxyfurans can be prepared efficiently via treatment of acetal-containing propargylic alcohols (obtained from the addition of 3,3-diethoxypropyne to aldehydes) with 2 mol% gold catalyst in an alcohol solvent at room temperature. The resulting furans show useful reactivity in a variety of subsequent transformations

    Functional, Non-Clonal IgMa-Restricted B Cell Receptor Interactions with the HIV-1 Envelope gp41 Membrane Proximal External Region

    Get PDF
    The membrane proximal external region (MPER) of HIV-1 gp41 has several features that make it an attractive antibody-based vaccine target, but eliciting an effective gp41 MPER-specific protective antibody response remains elusive. One fundamental issue is whether the failure to make gp41 MPER-specific broadly neutralizing antibodies like 2F5 and 4E10 is due to structural constraints with the gp41 MPER, or alternatively, if gp41 MPER epitope-specific B cells are lost to immunological tolerance. An equally important question is how B cells interact with, and respond to, the gp41 MPER epitope, including whether they engage this epitope in a non-canonical manner i.e., by non-paratopic recognition via B cell receptors (BCR). To begin understanding how B cells engage the gp41 MPER, we characterized B cell-gp41 MPER interactions in BALB/c and C57BL/6 mice. Surprisingly, we found that a significant (∌7%) fraction of splenic B cells from BALB/c, but not C57BL/6 mice, bound the gp41 MPER via their BCRs. This strain-specific binding was concentrated in IgMhi subsets, including marginal zone and peritoneal B1 B cells, and correlated with enriched fractions (∌15%) of gp41 MPER-specific IgM secreted by in vitro-activated splenic B cells. Analysis of Igha (BALB/c) and Ighb (C57BL/6) congenic mice demonstrated that gp41 MPER binding was controlled by determinants of the Igha locus. Mapping of MPER gp41 interactions with IgMa identified MPER residues distinct from those to which mAb 2F5 binds and demonstrated the requirement of Fc CH regions. Importantly, gp41 MPER ligation produced detectable BCR-proximal signaling events, suggesting that interactions between gp41 MPER and IgMa determinants may elicit partial B cell activation. These data suggest that low avidity, non-paratopic interactions between the gp41 MPER and membrane Ig on naĂŻve B cells may interfere with or divert bnAb responses

    Atlantic salmon cardiac primary cultures:An in vitro model to study viral host pathogen interactions and pathogenesis

    Get PDF
    Development of Salmon Cardiac Primary Cultures (SCPCs) from Atlantic salmon pre-hatch embryos and their application as in vitro model for cardiotropic viral infection research are described. Producing SCPCs requires plating of trypsin dissociated embryos with subsequent targeted harvest from 24h up to 3 weeks, of relevant tissues after visual identification. SCPCs are then transferred individually to chambered wells for culture in isolation, with incubation at 15-22°. SCPCs production efficiency was not influenced by embryo's origin (0.75/ farmed or wild embryo), but mildly influenced by embryonic developmental stage (0.3 decline between 380 and 445 accumulated thermal units), and strongly influenced by time of harvest post-plating (0.6 decline if harvested after 72 hours). Beating rate was not significantly influenced by temperature (15-22°) or age (2-4 weeks), but was significantly lower on SCPCs originated from farmed embryos with a disease resistant genotype (F = 5.3, p<0.05). Two distinct morphologies suggestive of an ex vivo embryonic heart and a de novo formation were observed sub-grossly, histologically, ultra-structurally and with confocal microscopy. Both types contained cells consistent with cardiomyocytes, endothelium, and fibroblasts. Ageing of SCPCs in culture was observed with increased auto fluorescence in live imaging, and as myelin figures and cellular degeneration ultra-structurally. The SCPCs model was challenged with cardiotropic viruses and both the viral load and the mx gene expression were measurable along time by qPCR. In summary, SCPCs represent a step forward in salmon cardiac disease research as an in vitro model that partially incorporates the functional complexity of the fish heart

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits

    Get PDF
    There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (> 2.4 cm), weight ( 5 kg), and body mass index (BMI) (> 3.5 kg/m(2)). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 x 10(-10), 6.0 x 10(-5), and 2.9 x 10(-3)). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P < 5 × 10−8). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (Rg = −0.22, P = 5.5 × 10−13), T2D (Rg = −0.27, P = 1.1 × 10−6) and coronary artery disease (Rg = −0.30, P = 6.5 × 10−9). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P = 1.9 × 10−4). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated
    corecore