Gold and Silver Catalyzed Reactions of Propargylic Alcohols in the **Presence of Protic Additives.**

Matthew N. Pennell, [a] Peter G. Turner, [b] and Tom D. Sheppard*[a]

Mr M. N. Pennell, Dr. T. D. Sheppard [a] Department of Chemistry

University College London

Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ, U.K.

E-mail: matthew.pennell.09@ucl.ac.uk, tom.sheppard@ucl.ac.uk

Dr. P. G. Turner GlaxoSmithKline R & D Limited, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, U.K.

Abstract:

A wide range of primary, secondary and tertiary propargylic alcohols undergo Meyer-Schuster rearrangement to give enones at room temperature in the presence of a gold(I) catalyst and small quantities of MeOH or PMPB(OH)2. The synthesis of the enone natural products Isoegomaketone and Daphenone was achieved using this reaction as the key step. The rearrangement of primary propargylic alcohols can readily be combined in a one-pot procedure with the addition of a nucleophile to the resulting terminal enone, giving β -aryl, β -alkoxy, β -amino or β -sulfido ketones. Propargylic alcohols bearing an adjacent electron-rich aryl group can also undergo silver-catalyzed substitution of the alcohol with oxygen, nitrogen and carbon nucleophiles. This latter reaction was initially observed with a batch of gold catalyst which was probably contaminated with small quantities of silver salt.

Introduction

α,β-Unsaturated carbonyl compounds are important building blocks in organic synthesis and are commonly used as substrates in a wide variety of transformations including Michael-additions, [1] Diels-Alder reactions, [2] cyclopropanations [3] and a wide variety of organocatalytic processes. [4] This diversity in application makes them common intermediates in the total synthesis of natural products and the synthesis of drug molecules. Traditionally α,β-unsaturated carbonyl compounds are synthesised via aldol condensation reactions, or via a Wittig, [5] Horner-Wadsworth-Emmons [6] or Petersen [7] olefination reaction. The Meyer-Schuster rearrangement [8]-[9] of a propargylic alcohol can provide a convenient alternative to these processes, which avoids the production of stoichiometric byproducts such as phosphorous oxides.

The required propargylic alcohol can readily be synthesised through an alkynyl anion addition to an aldehyde or ketone, typically a high yielding process which is also highly effective even with sterically hindered carbonyls. This two step process can therefore offer a highly attractive method to synthesise α, β -unsaturated carbonyl compounds (Scheme 1).

The classical Meyer-Schuster rearrangement involves heating the alcohol with strong acid, and is hence incompatible with many functional groups. [8] However, more recently a number of highly effective metal-catalyzed methods for achieving this reaction have been reported. [10]-[14] The emergence of Au(I) catalysis [15] in particular has revived this reaction, and conditions have been developed which enable the rearrangement to take place under very mild conditions. The first reports required the alcohol to be converted to the corresponding acetate derivative, [11] but more recently procedures have been developed for the direct rearrangement of the alcohols themselves. [12] We have previously reported that carrying out the Au-catalyzed rearrangement in a non-coordinating solvent, in the presence of one equivalent of methanol, greatly accelerates the reaction.[14]

Herein we report on the full scope of this room temperature Meyer-Schuster rearrangement with regard to the rearrangement of secondary and tertiary propargylic alcohols, and its application to the synthesis of the natural products Isoegomaketone and Daphenone. We also report convenient one-pot procedures for the direct conversion of primary propargylic alcohols into β -arylketones, β -alkoxyketones, β -aminoketones and β -sulfidoketones via intermediate terminal enones. During the course of these studies it was observed that propargylic substitution reactions of electron rich propargylic alcohols took place in some cases. This interesting side reaction, which works with a wide range of oxygen, carbon and nitrogen nucleophiles, was shown to be mediated by silver salts, probably present as impurities in some batches of gold catalyst.

Results and Discussion

Rearrangement of Secondary Propargylic Alcohols

In our preliminary experiments we quickly identified that the Au-catalyzed Meyer-Schuster rearrangement was more efficient using a cationic gold catalyst^[16] in non-polar solvents in the presence of a small quantity of a protic additive (either a boronic acid or methanol).^[14] A wide range of secondary propargylic alcohols underwent Meyer-Schuster rearrangement at room temperature upon treatment with 2 mol% Au(I) catalyst and 1 eq. of MeOH (Table 1) in PhMe as solvent. In nearly all cases the enone was obtained as the pure *E* isomer after purification (see Supporting Information).

A variety of alkyl, alkenyl and aryl substituents at R¹ on the alkyne were tolerated (Entries 1-7) and the reaction could be run on a 1 g scale without difficulty using only 1 mol% Au catalyst (Entry 1). An alkoxy group could be incorporated to give access to an α,β -unsaturated ester (Entry 8). Compounds containing both electron rich aromatic groups (Entry 6) and electron deficient aromatic groups (Entry 5) at R¹ rearranged smoothly, as did a substrate containing a thiophene ring (Entry 7). The sterically congested substrate containing a tertiary butyl substituent (Entry 2) rearranged to the corresponding enone in very good yield, but required a prolonged reaction time of 16 hours. A substrate containing a conjugated alkene at R¹ (Entry 3) gave a lower yield, but this probably reflects the relative instability of the dienone product 2c rather than the yield of the reaction itself. A variety of substituents could also be incorporated at the R² position (Entries 9-15). Benzylic alcohols rearrange efficiently (Entries 9-17) with substrates containing electron deficient (Entries 11-13) or moderately electrondonating (Entry 10) substituents giving excellent yields. Whilst electron-rich alcohol 1n gave the corresponding enone 2n in excellent yield, dimethylaniline 10 gave only a 15% yield of the corresponding enone 20. This may be due to the presence of the co-ordinating nitrogen atom which can potentially interfere with the gold catalyst (vide infra). Propargylic alcohols containing electron-rich heterocycles gave the corresponding enones in good yield (Entries 16-17), and there was no evidence for Au-catalyzed reaction of the electron-rich hetereocycle with the pendant enone in the product.[17] Further combinations of substituents could also be incorporated (Entries 18-22) including cyclopropanes (1r and 1v), which did not undergo ring-opening during the rearrangement reaction. The dienone 2v (Entry 22) can be generated in excellent yield from the corresponding propargylic alcohol 1v. Interestingly the initial major product observed from the rearrangement was the E,E isomer. However after purification the pure E,Z isomer 1v was obtained cleanly in good yield. Presumably this latter isomer is actually thermodynamically more stable in this case.

Application to Natural Product Synthesis

Isoegomaketone **6** is an essential oil component of *perilla frutescens britt* and has been shown to exhibit anti-inflammatory properties. ^{[18]-[19]} The natural product **6** was synthesised in two steps via fluoride-mediated addition ^[20] of commercially available silylacetylene **3** to aldehyde **4**, followed by Meyer-Schuster rearrangement of the resulting mixture of alcohol **5a** and its corresponding TMS ether **5b**, with concomitant silyl deprotection. (Scheme 2). The natural product **6** was obtained in 86% overall yield with high *E:Z* selectivity from the two-step sequence.

We also carried out a short synthesis of Daphenone 13 (Scheme 3), a natural product isolated from *daphne odora* which showed cytotoxicity against five human tumor cell lines. ^[21] Sonigashira coupling of 4-iodophenol 8 with TMS-acetylene 7 gave phenol 9^[22] after desilylation. After protection of the phenol as a silyl ether, the alkyne 10 was lithiated and reacted with dihydrocinnamaldehyde 11 to give propargylic alcohol 12. Meyer-Schuster rearrangement of 12 proceeded cleanly without deprotection of the silyl ether, which was cleaved with fluoride to give the natural product 13 (58% yield over 6 steps from 8).

Problematic Substrates for the Meyer-Schuster Rearrangement

As mentioned above, propargylic alcohols containing nitrogen functionality did not undergo efficient Meyer-Schuster rearrangement (Table 1, entry 15 and Scheme 4). Tertiary amine **14** was completely unreactive, whereas pyridine **15** gave the abnormal rearrangement product **16** in 10% yield. The low reactivity of these substrates is presumably a consequence of the ability of the basic nitrogen atom to co-ordinate to the Au-catalyst and deactivate it. Addition of 1 eq. of pyridine to alcohol **1f** completely inhibited the Meyer-Schuster rearrangement of this otherwise reactive substrate. It should be noted that there are virtually no reports of the Au-catalyzed Meyer-Schuster rearrangement of nitrogen containing compounds in the literature. [23]

Propargylic Substitution Reactions

During the course of our evaluation of the substrate scope of the reaction (Table 1), we initially observed the formation of propargylic substitution product **17a** in 54% yield when rearrangement of electron rich alcohol **1n** was attempted, with **2n** being produced as a minor product (Scheme 5). It subsequently transpired that the formation of such products was not reproducible, and appeared to be dependent on the batch of gold catalyst used in the reaction – with a new batch of catalyst the Meyer-Schuster rearrangement proceeded cleanly in good yield (Table 1, entry 14).

We hypothesised that the propargylic substitution reaction was probably mediated by an impurity present in the original batch of gold catalyst. The most likely candidate seemed to be $AgNTf_2$, used during the preparation of the catalyst, and pleasingly treatment of propargylic alcohol 1n with $AgNTf_2$ /MeOH in PhMe led to the formation of substitution product 17a in good yield (Table 2, Entry 1). Reaction of alcohol 1n with $HNTf_2$ /MeOH in PhMe led to a complex mixture of products suggesting that this is not simply an acid-catalyzed process. [24]-[25]

These reaction conditions were applied to a range of different nucleophiles to illustrate the scope of the reaction (Table 2). Substitution reactions with oxygen, (Entries 1-3) carbon (Entries 4-7), and nitrogen nucleophiles (Entries 8-9) were all possible. In the absence of an external nucleophile, dimerisation of the propargylic alcohol took place to form the symmetrical ether as a mixture of diastereoisomers (Entry 10). The presence of both an alkyne and an electron rich aromatic ring at R¹ seem to be necessary for the substitution reaction to take place. Propargylic alcohols **1a**, **1f** and **1l** did not react in the presence of AgNTf₂ and MeOH even at 60 °C; similarly, benzhydrol (Ph₂CHOH) and 1-phenylethanol were also unreactive. It should be noted that neither HNTf₂ nor AgNTf₂ were able to mediate the Meyer-Schuster rearrangement of the propargylic alcohols **1a**, **1f** and **1l**, suggesting that an Au catalyst is essential for this reaction. [25]

It is notable that the Ag-catalyzed substitution reaction must be highly efficient as it was the dominant reaction pathway in our original experiments, even though the quantity of Ag present as impurity in the 2 mol% Au-catalyst used must have been very small. We carried out an NMR experiment to determine the relative rates of the silver and gold catalyzed reactions (Scheme 6). Treatment of alcohol 1n with 1 mol% of each of the catalysts in the presence of 2 eq. MeOH in C_6D_6 gave a 20:1 ratio of substitution product 17a to Meyer-Schuster rearrangement product 2n after 10 minutes at room temperature, illustrating that the substitution reaction is considerably faster than the Meyer-Schuster rearrangement. There are several reports in the literature of metal-catalyzed substitution reactions of alcohols^{[23],[26]} and in the light of these results, it is possible that some of these processes may actually be mediated or assisted by trace quantities of Ag-salts that are present, particularly where Ag salts have been added as a co-catalyst.^[27] However, it should be noted that Au(III)-catalyzed substitution reactions have been reported to work with propargylic alcohols which do not contain an electron-rich aromatic substitutent.^[26d]

During the course of these investigations, we also explored the rearrangement of terminal propargylic alcohols to see whether it was possible to obtain α,β -unsaturated aldehydes via Meyer-Schuster rearrangement. [28] The initial reactions were carried out by treatment of alcohol 18 with the contaminated Au catalyst and gave a mixture of the desired aldehyde 19 and α -methoxyketone 20. (Scheme 7). The latter product is presumably formed via Ag-mediated substitution of the alcohol, followed by Au-catalyzed hydration of the terminal alkyne. [29] Reaction of 18 with a new batch of catalyst gave α -hydroxyketone 21 as the major product, together with traces of aldehyde 19. As above (Table 2), treatment of alcohol 18 with catalytic AgNTf₂ in the presence of MeOH gave the substitution product 22 cleanly in good yield. Treatment of 22 with catalytic Au gave ketone 20, providing evidence that product 20 was formed in our original experiment via two separate steps catalyzed by the two different metals. [27]

Tertiary Propargylic Alcohols

Tertiary propargylic alcohols 23 can be easily prepared by addition of alkynyl anions to ketones, and provide access to sterically congested trisubstituted enones 24 upon Meyer-Schuster rearrangement. We were able to demonstrate the formation of a range of symmetrically and unsymmetrically substituted enones 24 in good to excellent yield and with high levels of geometric control in some cases (Table 3). Where there is a large difference in the size of the propargylic substituents, impressive selectivity is observed (Entry 4), and even when the groups are of similar size moderate selectivity is still obtained (Entry 2). In general, reactions of tertiary propargylic alcohols were found to be slower than those of secondary propargylic alcohols.

The use of p-methoxyphenyl boronic $\operatorname{acid}^{[13]-[14],[30]}$ **25** rather than MeOH as the reaction additive was found to give higher yields and higher E:Z selectivity in many cases, though longer reaction times were necessary. Extending the reaction time with MeOH as the additive did not increase the E:Z selectivity however. Interestingly, addition of boronic acid **25** to the 3:1 ratio of enone **24d** obtained from Au/MeOH catalyzed rearrangement, led to further isomerisation of the product to give an enhanced E:Z ratio (Scheme 8). This indicates that the boronic acid is involved in the isomerisation of the alkene, possibly via an addition process to give cyclic boronate **26**.

Primary Propargylic Alcohols

The rearrangement of primary propargylic alcohols should provide a highly effective and mild method for accessing terminal enones. However, during the rearrangement of **27** in the presence of methanol as the additive, some addition of MeOH to enone **28a** was observed to give **29** (Scheme 9).^[12a]

Pleasingly, in the presence of boronic acid **25** as an additive, clean rearrangement to the unsubstituted enone **28a** was observed. The reaction provides a mild method for generating highly reactive terminal enones, and the crude product is clean enough to be used directly in further transformations. We therefore developed reaction conditions for the synthesis of a range of functionalised products by addition of nucleophiles to the crude enone, generated in situ from the propargylic alcohol (Table 4). In our preliminary report we outlined how Pd-catalyzed addition of boronic acids^[31] could be used to access β -aryl ketones **30** in moderate to good yield (Entries 1-4). ^[14] β -Alkoxyketones **31** (Entries 5-6), β -aminoketones **32** (Entries 7-12) and β -sulfidoketones **33** (Entries 13-14) can also be readily prepared via simple one-pot procedures, by addition of the appropriate nucleophile directly to the reaction mixture after the Meyer-Schuster rearrangement reaction is complete.

Conclusion

In the presence of catalytic PPh_3AuNTf_2 and a protic additive such as MeOH or $PMPB(OH)_2$, the Meyer-Schuster rearrangement of a wide range of propargylic alcohols occurs in generally good to excellent yield. Secondary alcohols rearrange with high selectivity for the E-isomer of the enone product and tertiary alcohols with moderate to high selectivity. This reaction was employed as a key step in the synthesis of the enone natural products Isoegomaketone and Daphenone. The rearrangement of primary propargylic alcohols can be combined with the addition of carbon, oxygen or nitrogen nucleophiles to the resulting terminal enone to give access to β -substituted ketones in a one-pot procedure. During the course of this work, we also observed that propargylic alcohols bearing an electron-rich aryl group readily undergo substitution of the alcohol, with a variety of oxygen, carbon and nitrogen nucleophiles in the presence of a silver catalyst. This latter reaction was the dominant pathway over the desired Meyer-Schuster rearrangement with a batch of Au(I) catalyst that was probably contaminated with Ag(I) salts.

Experimental Section

All reactions were carried out under an atmosphere of air unless otherwise indicated. Tetrahydrofuran was used following purification from a zeolite drying apparatus. All other chemicals were used as supplied unless otherwise indicated. Column chromatography was carried out using silica gel (40-60 μ m) and analytical thin layer chromatography was carried out using aluminium-backed plates coated with silica gel. Components were visualised using combinations of ultra-violet lights, iodine, ceric ammonium molybdate, phosphomolybdic acid and potassium permanganate. ¹H NMR spectra were recorded at at 500 MHz or at 600 MHz in CDCl₃ using residual protic solvent CHCl₃ (δ = 7.26 ppm, s) as the internal standard. Chemical shifts are quoted in ppm using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; qn, quintet; m, multiplet; br, broad or a combination of these. The coupling constants (J) are measured in Hertz. ¹³C NMR spectra were recorded at 125 MHz or at 150 MHz in CDCl₃ using the central reference of CHCl₃ (δ = 77.0 ppm, t) as the internal standard.

Mever-Schuster Rearrangements to give enones 2, 16, and 24

Compounds 2a-2b, 2d, 2f, 2r, 2u, and 24a-24f have previously been reported. [14]

General Procedure A (Preparation of compounds 2, 6 and 13): $[Ph_3PAuNTf_2]_2PhMe \ (1 \ mol\%)$ and methanol $(1 \ eq.)$ or 4-methoxyboronic acid $(0.2 \ eq.)$ were added to a solution of propargylic alcohol in toluene $(10 \ mL/g)$ and the solution stirred magnetically at room temperature until starting material had disappeared (TLC). The solvent was removed *in vacuo* and the crude product purified by column chromatography

(*E*)-1-(Cyclohex-1-en-1-yl)hex-2-en-1-one (2c): $^{[10e]}$ IR (film) v = 2962, 2936, 2875, 1711 cm $^{-1}$; 1 H NMR (CDCl₃, 600 MHz): δ = 6.91-6.88 (m, 1H), 6.84 (dt, *J* = 15.4, 7.4 Hz, 1H), 6.63 (br d, *J* = 15.4 Hz, 1H), 2.30-2.24 (m, 4H), 2.20 (app q, *J* = 7.4 Hz, 2H), 1.68-1.56 (m 4H), 1.50 (app sx, *J* = 7.4 Hz, 2H), 0.94 ppm (t, *J* = 7.4 Hz, 3H); 13 C NMR (CDCl₃, 150 MHz): δ = 191.6, 147.0, 140.00, 139.96, 125.0, 34.8, 26.3, 23.5, 22.1, 21.7, 21.6, 13.9 ppm; Found (EI): [M] 178.13492, $C_{12}H_{18}O$ requires 178.13522.

(*E*)-1-(4-(Trifluoromethyl)phenyl)hex-2-en-1-one (2e): 1 H NMR (CDCl₃, 600 MHz): δ = 8.00 (d, J = 8.3 Hz, 2H), 7.73 (d, J = 8.3 Hz, 2H), 7.12-7.07 (dt, J = 15.4, 7.2 Hz, 1H), 6.86-6.83 (br dt, J = 15.4, 1.4 Hz, 1H), 2.33 (br qd, J = 7.2, 1.5 Hz, 2H), 1.60-1.53 (app sx, J = 7.4 Hz, 2H), 0.98 ppm (t, J = 7.4 Hz, 3H); 13 C NMR (CDCl₃, 150 MHz): δ = 190.2, 151.6, 141.0, 134.0 (q, J = 32.5 Hz), 128.9, 125.9, 125.7 (q, J = 3.7 Hz), 123.9 (q, J = 274 Hz), 35.1, 21.5, 13.9 ppm; Found (EI): [M] 242.09084, C_{13} H₁₃OF₃ requires 242.09130

(*E*)-1-(Thiophen-3-yl)hex-2-en-1-one (2g): IR (film) v = 2963, 2933, 2874, 1665 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): δ = 8.05 (m, 1H), 7.59 (br d, J = 4.9 Hz, 1H), 7.33-7.31 (m, 1H), 7.08 (dt, J = 15.5, 7.1 Hz, 1H), 6.77 (br d, J = 15.5 Hz, 1H), 2.30-2.25 (m, 2H), 1.54 (app sx, J = 7.4 Hz, 2H), 0.96 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ = 184.4, 149.1, 142.9, 132.1, 127.6, 126.7, 125.4, 34.9, 21.6, 13.9 ppm; Found (EI): [M] 180.06071, C₁₀H₁₂OS requires 180.06034

(E)-Ethyl 5-phenylpent-2-enoate (2h): $^{[32]}$ H NMR (CDCl₃, 600 MHz): δ = 7.29 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 7.5 Hz, 2H), 7.00 (dt, J = 15.7, 6.9 Hz, 1H), 5.84 (dt, J = 15.7, 1.6 Hz, 1H), 4.18 (q. J = 7.2 Hz, 2H), 2.77 (t, J = 7.6 Hz, 2H), 2.55-2.50 (m, 2H), 1.28 ppm (t, J = 7.2 Hz, 3H); 13 C

NMR (CDCl₃, 150 MHz): δ = 166.7, 148.2, 140.9, 128.6, 128.4, 126.3, 121.9, 60.3, 34.4, 34.1, 14.4 ppm; Found (EI): [M-OEt] 159.08089, $C_{11}H_{11}O$ requires 159.08044

- (*E*)-1-Phenylhept-1-en-3-one (2i): $^{[33]}$ IR (film) v = 2955, 2942, 2926, 2866, 1649 cm $^{-1}$; 1 H NMR (CDCl₃, 600 MHz): δ = 7.55 (d, J = 16.3 Hz, 1H), 7.56-7.53 (m, 2H), 7.41-7.38 (m, 3H), 6.75 (d, J = 16.3 Hz, 1H), 2.64 (t, J = 7.5 Hz, 2H), 1.69-1.64 (m, 2H), 1.39 (app sx, J = 7.5 Hz, 2H), 0.94 ppm (t, J = 7.5 Hz, 3H); 13 C NMR (CDCl₃, 150 MHz): δ = 200.9, 142.4, 134.7, 130.5, 129.1, 128.4, 126.4, 40.8, 26.6, 22.6, 14.1 ppm.
- (*E*)-1-(4-Tolyl)hept-1-en-3-one (2j): $^{[33]}$ IR (film) v = 2955, 2930, 2862, 1648 cm⁻¹; 1 H NMR (CDCl₃, 500 MHz): $\delta = 7.53$ (d, J = 16.3 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 6.70 (d, J = 16.3 Hz, 1H), 2.65 (t, J = 7.5 Hz, 2H), 2.38 (s, 3H), 1.65 (qn, J = 7.5 Hz, 2H), 1.39 (sx, J = 7.5 Hz, 2H), 0.94 ppm (t, J = 7.5 Hz, 3H); 13 C NMR (CDCl₃, 125 MHz): $\delta = 201.0$, 142.5, 141.0, 131.9, 129.8, 128.4, 125.5, 40.7, 26.7, 22.6, 21.6, 14.1 ppm.
- (*E*)-1-(4-Fluorophenyl)hept-1-en-3-one (2*k*):^{10c] 1}H NMR (CDCl₃, 500 MHz): δ = 7.53 (br dd, J = 8.6, 5.4 Hz, 2H), 7.50 (d, J = 16.2 Hz, 1H), 7.08 (t, J = 8.6 Hz, 2H), 6.67 (d, J = 16.2 Hz, 1H), 2.65 (t, J = 7.4 Hz, 2H), 1.65 (qn, J = 7.4 Hz, 2H), 1.38 (app sx, J = 7.4 Hz, 2H), 0.94 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ = 200.5, 162.2 (d, J = 250.7 Hz), 141.0, 130.9 (d, J = 3.8 Hz), 130.2 (d, J = 8.6 Hz), 126.0 (d, J = 1.9 Hz), 116.1 (d, J = 22.0 Hz), 40.9, 26.5, 22.5, 14.0 ppm; Found (CI): [M+H] 207.11852, C₁₃H₁₆OF requires 207.11806.
- (*E*)-1-(4-(Trifluoromethyl)phenyl)hept-1-en-3-one (2l): 110C_1 H NMR (CDCl₃, 500 MHz): δ = 7.63 (s, 4H), 7.56 (d, J = 16.3 Hz, 1H), 6.80 (d, J = 16.3 Hz, 1H), 2.68 (t, J = 7.4 Hz, 2H), 1.67 (qn, J = 7.4 Hz, 2H), 1.38 (app sx, J = 7.4 Hz, 2H), 0.95 ppm (t, J = 7.4 Hz, 3H); 13 C NMR (CDCl₃, 125 MHz): δ = 200.2, 141.3, 138.1, 131.9 (q, J = 32.7 Hz), 128.4, 128.3, 125.6 (q, J = 3.8 Hz), 123.9 (q, J = 271.6 Hz), 41.1, 26.3, 22.5, 14.0 ppm; Found (CI): [M+H] 257.11501, C₁₄H₁₆OF₃ requires 257.11532.
- (*E*)-1-(4-Bromophenyl)hept-1-en-3-one (2m): IR (film) ν = 2964, 2951, 2930, 2868, 1685 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ = 7.52 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 16.1 Hz, 1H), 7.40 (d, J = 8.5 Hz, 2H), 6.72 (d, J = 16.1 Hz, 1H), 2.65 (t, J = 7.4 Hz, 2H), 1.65 (app qn, J = 7.4 Hz, 2H), 1.38 (app sx, J = 7.4 Hz, 2H), 0.94 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ = 200.4, 140.9, 133.6, 132.2, 129.7, 126.8, 124.7, 41.0, 26.5, 22.5, 14.0 ppm; Found (CI): [M+H] 267.03824, C₁₃H₁₆OBr requires 267.03845.
- $\begin{array}{l} \textbf{(E)-1-(4-Methoxyphenyl)hept-1-en-3-one\ (2n):}^{10cl}\ IR\ (film)\ \nu = 2958,\ 2934,\ 2872,\ 1685\ cm^{-1};\ ^{1}H\ NMR\ (CDCl_{3},\ 600\ MHz):\ \delta = 7.51\ (d,\ J=16.0\ Hz,\ 1H),\ 7.50\ (d,\ J=8.6\ Hz,\ 2H),\ 6.91\ (d,\ J=8.6\ Hz,\ 2H),\ 6.63\ (d,\ J=16.0\ Hz,\ 1H),\ 3.84\ (s,\ 3H),\ 2.64\ (t,\ J=7.5\ Hz,\ 2H),\ 1.67\ (app\ qn,\ J=7.5\ Hz,\ 2H),\ 1.38\ (app\ sx,\ J=7.5\ Hz,\ 2H),\ 0.94\ ppm\ (t,\ J=7.5\ Hz,\ 3H);\ ^{13}C\ NMR\ (CDCl_{3},\ 150\ MHz):\ \delta = 200.9,\ 161.6,\ 142.2,\ 130.1,\ 127.3,\ 124.2,\ 114.5,\ 55.5,\ 40.7,\ 26.8,\ 22.6,\ 14.1\ ppm. \end{array}$
- (*E*)-1-(4-(Dimethylamino)phenyl)hept-1-en-3-one (2o): IR (film) v = 2956, 2931, 2871, 1646 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): δ = 7.50 (d, J = 16.0 Hz, 1H), 7.45 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 16.0 Hz, 1H), 3.03 (s, 6H), 2.62 (t, J = 7.5 Hz, 2H), 1.65 (app qn, J = 7.5 Hz, 2H), 1.38 (app sx, J = 7.5 Hz, 2H), 0.94 ppm (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ = 201.1, 152.0, 143.3, 130.1, 122.3, 121.7, 112.0, 40.4, 40.3, 27.1, 22.7, 14.1 ppm; Found (EI): [M] 231.16240, C₁₅H₂₁ON requires 231.16176.
- (*E*)-1-(5-Methylthiophen-2-yl)hept-1-en-3-one (2p): IR (film) v = 2960, 2932, 2873, 1651 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): δ = 7.58 (d, J = 15.8 Hz, 1H), 7.08 (br d, J = 3.6 Hz, 1H), 6.72 (br d, J = 3.6 Hz, 1H), 6.41 (dd, J = 15.8 Hz, 1H), 2.59 (t, J = 7.4 Hz, 2H), 2.50 (s, 3H), 1.63 (app qn, J = 7.4 Hz, 2H), 1.38 (app sx, J = 7.4 Hz, 2H), 0.93 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ = 200.4, 144.4, 138.1, 135.4, 132.5, 126.8, 123.9, 40.9, 26.7, 22.6, 16.0, 14.1 ppm; Found (EI): [M] 208.09115, $C_{12}H_{16}OS$ requires 208.09164.
- (*E*)-1-(Furan-2-yl)hept-1-en-3-one (2q): IR (film) v = 2961, 2934, 2875, 1611 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.49$ (br d, J = 1.5 Hz, 1H), 7.32 (d, J = 15.8 Hz, 1H), 6.65 (d, J = 3.4 Hz, 1H), 6.64 (d, J = 15.8 Hz, 1H), 6.47 (br dd, J = 3.4 Hz, 1H), 2.60 (t, J = 7.4 Hz, 2H), 1.67-1.61 (m, 2H), 1.36 (app sx, J = 7.4 Hz, 2H), 0.93 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 200.4$, 151.3, 144.9, 128.6, 123.5, 115.7, 112.6, 41.3, 26.6, 22.6, 14.0 ppm; Found (EI): [M] 178.09903, C₁₁H₁₄O₂ requires 178.09883.
- **1-(4-Methoxyphenyl)hept-2-en-1-one (2s):** IR (film) $v = 2962, 2935, 1600 \text{ cm}^{-1}; Z\text{-Enone: }^{-1}\text{H NMR (CDCl}_3, 600 \text{ MHz}): δ = 7.94 (d, <math>J = 8.6 \text{ Hz}, 2\text{H}), 6.90 (d, <math>J = 8.6 \text{ Hz}, 2\text{H}), 6.75 (dt, <math>J = 11.6, 1.5 \text{ Hz}, 1\text{H}), 6.26 (dt, <math>J = 11.6, 7.5 \text{ Hz}, 1\text{H}), 3.87 (s, 3\text{H}), 2.60 (qd, <math>J = 7.5, 1.5 \text{ Hz}, 2\text{H}), 1.45 (app qn, <math>J = 7.5 \text{ Hz}, 2\text{H}), 1.35 (app sx, <math>J = 7.5 \text{ Hz}, 2\text{H}), 0.90 \text{ ppm (t, } J = 7.5 \text{ Hz}, 3\text{H}); }^{-13}\text{C NMR (CDCl}_3, 150 \text{ MHz}): δ = 191.1, 163.3, 148.7, 131.7, 130.8, 124.5, 113.8, 55.6, 31.6, 29.7, 22.6, 14.1 ppm; <math>E\text{-Enone: }^{-1}\text{H NMR (CDCl}_3, 600 \text{ MHz}): δ = 7.95 (d, <math>J = 8.8 \text{ Hz}, 2\text{H}), 6.75 (dt, <math>J = 15.5, 7.0 \text{ Hz}, 1\text{H}), 6.95 (d, <math>J = 8.8 \text{ Hz}, 2\text{H}), 6.89 (dt, <math>J = 15.5, 1.5 \text{ Hz}, 1\text{H}), 3.87 (s, 3\text{H}), 2.31 (qd, <math>J = 7.5, 1.5 \text{ Hz}, 2\text{H}), 1.50 (app qn, <math>J = 7.5 \text{ Hz}, 2\text{H}), 1.38 (app sx, <math>J = 7.5 \text{ Hz}, 2\text{H}), 0.93 \text{ ppm (t, } J = 7.5 \text{ Hz}, 3\text{H}); }^{-13}\text{C NMR (CDCl}_3, 150 \text{ MHz}): δ = 189.3, 163.3, 149.2, 131.0, 130.9, 125.6, 113.8, 55.6, 32.7, 30.5, 22.5, 14.0 ppm; Found (CI): [M+H] 219.13812, C₁₄H₁₉O₂ requires 219.13850$
- (*E*)-1-(4-Methoxyphenyl)-5-phenylpent-2-en-1-one (2t): IR (film) $v = 2965, 2938, 1618 \text{ cm}^{-1}; {}^{1}\text{H NMR (CDCl}_{3}, 600 \text{ MHz}): \delta = 7.91 \text{ (d, } J = 8.9 \text{ Hz, 2H), 7.31}$ (t, $J = 7.6 \text{ Hz, 2H), 7.22 \text{ (m, 3H), 7.07}}$ (dt, J = 15.4, 6.9 Hz, 1H), 6.94 (d, J = 8.9 Hz, 2H), 6.88 (dt, J = 15.4, 1.3 Hz, 1H), 3.05 (s, 3H), 2.85 (t, $J = 7.5 \text{ Hz, 2H}), 2.64 \text{ ppm (m, 2H); } {}^{13}\text{C NMR (CDCl}_{3}, 150 \text{ MHz}): \delta = 189.2, 163.4, 147.5, 141.1, 131.0, 130.8, 128.63, 128.55, 126.3, 113.9, 55.6, 34.69, 34.66 \text{ ppm; Found (EI): }$ [M] 266.13090, $C_{18}H_{18}O_{2}$ requires 266.13013.
- (2*E*,4*Z*)-1-Cyclopropylocta-2,4-dien-1-one (2*v*): IR (film) $\nu = 2965, 2936, 2876, 1704$ cm⁻¹; ¹H NMR (CDCl₃ 600 MHz): $\delta = 7.23-7.18$ (dd, J = 15.4, 9.6 Hz, 1H), 6.21 (d, J = 15.4 Hz, 1H), 6.21-6.15 (m, 2H), 2.18-2.14 (m, 2H), 2.14-2.10 (m, 1H), 1.50-1.42 (app sx, J = 7.4 Hz, 2H), 1.10-1.06 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H), 0.91-0.87 ppm (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 200.6, 145.6, 142.8, 129.2, 128.1, 35.3, 22.0, 19.3, 13.8, 11.1$ ppm; Found (EI): [M] 164.11993, C₁₁H₁₆O requires 164.11957.
- (*E*)-1-(Pyridin-2-yl)hept-2-en-1-one (16): IR (film) v = 2960, 2933, 2831, 1621 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 8.71$ (m, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.85 (td, J = 7.9, 1.5 Hz, 1H), 7.58 (dt, J = 15.6, 1.2 Hz, 1H), 7.49-7.45 (m, 1H), 7.24 (dt, J = 15.6, 7.0 Hz, 1H), 2.35 (br qd, J = 7.0, 1.2 Hz, 2H), 1.55-1.48 (m, 2H), 1.41-1.35 (m, 2H), 0.93 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 189.7$, 154.3, 150.8, 148.9, 137.1, 126.9, 124.5, 123.0, 32.8, 30.4, 22.5, 14.0 ppm; Found (CI): [M+H] 190.12364, C₁₂H₁₆ON requires 190.12319.
- **1,3,3-Triphenylprop-2-en-1-one** (**24g**): $^{[34]}$ H NMR (CDCl₃, 600 MHz): δ = 7.91 (br d, J = 7.3 Hz, 2H), 7.49 (br t, J = 7.3 Hz, 1H), 7.41-7.36 (m, 7H), 7.29-7.25 (m, 3H), 7.20-7.17 (m, 2H), 7.12 ppm (s, 1H); 13 C NMR (CDCl₃, 150 MHz): δ = 192.8, 154.9, 141.5, 139.1, 138.3, 132.8, 129.9, 129.5, 128.9, 128.7, 128.58, 128.51, 128.49, 128.2, 124.1 ppm; Found (CI): [M+H] 283.11288, C₂₁H₁₆O requires 283.1174.

Synthesis of the Natural Products Isoegomaktone (6) and Daphenone (13):

(*E*)-Isoegomaketone (6):^{[18]-[19]} Isobutraldehyde (110 mg, 1.52 mmol), (furan-3-ylethynyl)trimethylsilane (500 mg, 3.65 mmol), and tetrabutylammonium triphenyldifluorosilicate (8 mg, 0.15 mmol) were dissolved in dry THF (5 mL). The resultant solution was stirred for 20 min at 0 °C. The reaction was quenched with aq. NaHCO₃ and the organic phase extracted with diethyl ether. The combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo* to give **5a** and **5b** as a mixture. **5** was submitted without further purification to the Meyer-Schuster Rearrangement reaction conditions (General Procedure C) to give *E*-Isoegomaketone in 86% yield over the two steps. IR (film) v = 2966, 2934, 2873, 1667 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 8.04$ (m, 1H), 7.45 (app br t, J = 1.7 Hz, 1H), 7.02 (dd, J = 15.4, 6.8 Hz, 1H), 6.83 (br dd, J = 1.7, 0.8 Hz, 1H), 6.49 (dd, J = 15.4, 1.5 Hz, 1H), 2.53 (app sxd, J = 6.8, 1.3 Hz, 1H), 1.11 ppm (d, J = 6.8 Hz, 6H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 185.0$, 154.7, 147.2, 144.3, 128.2, 124.1, 109.3, 31.4, 21.5 ppm; Found (EI): [M] 164.08354, C₁₀H₁₂O₃ requires 164.08318.

t-Butyl(4-ethynylphenoxy)dimethylsilane (10): 135 (4-Hydroxyphenyl)acetylene 9^{20} (400 mg, 3.43 mmol) and imidazole (230 mg, 3.43 mmol) were dissolved in DMF (10 ml) and TBSCl (510 mg, 3.43 mmol) was added. The reactants were stirred at room temperature overnight and then quenched with the addition of water. The resultant slurry was extracted with diethyl ether, the combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by flash column chromatography to give the protected acetylene 10. IR (film) v = 2957, 2930, 2896, 2860, 2157 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.38$ (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 2.99 (s, 1H), 0.98 (s, 9H), 0.20 ppm (s, 6H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 156.4$, 133.7, 120.3, 114.9, 83.8, 76.0, 25.7, 0.17, -4.3 ppm; Found (EI): [M] 233.12850, C₁₄H₂₀OSi requires 232.12779

1-(4-((t-Butyldimethylsilyl)oxy)phenyl)-5-phenylpent-1-yn-3-ol (12): Prepared according to general procedure S_A (see Supporting Information); IR (film) $v = 3650, 3007, 2944, 2293 \text{ cm}^{-1}; {}^{1}\text{H NMR (CDCl}_{3}, 600 \text{ MHz}): δ = 7.32 \text{ (d, } J = 8.6 \text{ Hz, 2H)}, 7.31-7.28 \text{ (m, 2H)}, 7.26-7.24 \text{ (m, 2H)}, 7.22-7.19 \text{ (m, 1H)}, 6.79 \text{ (d, } J = 8.6 \text{ Hz, 2H)}, 4.59 \text{ (br t, } J = 5.5 \text{ Hz, 1H)}, 2.86 \text{ (t, } J = 7.5 \text{ Hz, 2H)}, 2.14-2.08 \text{ (m, 2H)}, 1.96 \text{ (br s, 1H)}, 0.98 \text{ (s, 9H)}, 0.20 \text{ ppm (s, 6H)}; {}^{13}\text{C NMR (CDCl}_{3}, 150 \text{ MHz}): δ = 156.2, 141.5, 133.3, 128.7, 128.6, 126.1, 120.3, 115.4, 88.6, 85.4, 62.5, 39.5, 31.6, 25.8, 18.3, -4.3 \text{ ppm; Found (EI): [M] } 366.20131, C₂₃H₃₀O₂Si requires 366.20096$

Daphenone (13): Prepared according to General Procedure A; IR (film) v = 2954, 2926, 2856, 1737 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): δ = 7.85 (d, J = 8.8 Hz, 2H), 7.29 (m, 2H), 7.21 (m, 3H), 7.07 (dt, J = 15.3, 6.8 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 6.88 (dt, J = 15.3, 1.3 Hz, 1H), 6.44 (br s, 1H), 2.84 (t, J = 7.5 Hz, 2H), 2.64 ppm (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ = 189.7, 160.4, 148.1, 141.0, 131.4, 130.6, 128.6, 128.5, 126.30, 126.26, 115.5, 34.69, 34.63 ppm; Found (EI): [M] 252.11537, $C_{17}H_{16}O_2$ requires 252.11448.

Silver Catalyzed Substitution of Propargylic Alcohols

General Procedure B (Preparation of compounds 17 and 22): AgNTf₂ (1 mol%) and nucleophile (2 eq.) were added to a solution of propargylic alcohol in toluene (10 mL/g) and the solution stirred magnetically at room temperature until the starting material has disappeared (TLC) or at 60 °C overnight. The reaction was quenched with aq. NaHCO₃ and the organic phase extracted with diethyl ether. The combined organic phases were washed with brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by flash column chromatography to give 17.

1-Methoxy-4-(1-methoxyhept-2-yn-1-yl)benzene (**17a**): 136 1 H NMR (CDCl₃, 600 MHz): δ = 7.42 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 5.02 (br t, J = 1.9 Hz, 1H), 3.81 (s, 3H), 3.37 (s, 3H), 2.29 (td, J = 7.2, 1.9 Hz, 2H), 1.56-1.51 (m, 2H), 1.47-1.40 (m, 2H), 0.92 ppm (t, J = 7.3 Hz, 3H); 13 C NMR (CDCl₃, 150 MHz): δ = 159.7, 131.5, 128.9, 113.8, 88.5, 77.8, 72.9, 55.5, 55.4, 30.9, 22.1, 18.7, 13.7 ppm; Found (EI): [M] 232.14620, C₁₅H2₂₀O₂ requires 232.14578.

2-(3-(Cyclohex-1-en-1-yl)-1-methoxyprop-2-yn-1-yl)-5-methylthiophene (17b): IR (film) $v = 3007, 2958, 2238 \text{ cm}^{-1}; ^{1}H \text{ NMR (CDCl}_{3}, 600 \text{ MHz}): \delta = 6.94 \text{ (d, } J = 3.4 \text{ Hz, 1H), } 6.60 \text{ (m, 1H), } 6.19 \text{ (m, 1H), } 5.37 \text{ (s, 1H), } 3.39 \text{ (s, 3H), } 2.46 \text{ (s, 3H), } 2.19-2.14 \text{ (m, 2H), } 2.12-2.08 \text{ (m, 2H), } 1.66-1.61 \text{ (m, 2H), } 1.61-1.55 \text{ ppm} \text{ (m, 2H); } ^{13}\text{C NMR (CDCl}_{3}, 150 \text{ MHz}): \delta = 141.1, 139.9, 136.0, 126.5, 124.6, 120.1, 89.0, 83.3, 68.8, 55.0, 29.2, 25.7, 22.3, 21.5, 15.6 \text{ ppm; Found (EI): [M]} 246.10810, C_{13}H_{18}OS \text{ requires } 246.10729.$

1-(1-(Benzyloxy)hept-2-yn-1-yl)-4-methoxybenzene (**17c**): IR (film) $v = 2958, 2933, 2872, 2230 \text{ cm}^{-1}; {}^{1}\text{H NMR (CDCl}_{3}, 600 \text{ MHz}): δ = 7.45 (d, <math>J = 8.6 \text{ Hz}, 2\text{H}), 7.39-7.33 (m, 4\text{H}), 7.28 (m, 1\text{H}), 6.89 (d, <math>J = 8.6 \text{ Hz}, 2\text{H}), 5.16 (\text{br t}, J = 1.9 \text{ Hz}, 1\text{H}), 4.65 (d, <math>J = 11.7 \text{ Hz}, 1\text{H}), 4.62 (d, <math>J = 11.7 \text{ Hz}, 1\text{H}), 3.81 (\text{s}, 3\text{H}), 2.31 (td, <math>J = 7.1, 1.9 \text{ Hz}, 2\text{H}), 1.55 (\text{app qn}, J = 7.4 \text{ Hz}, 2\text{H}), 1.45 (\text{app sx}, J = 7.4 \text{ Hz}, 2\text{H}), 0.93 \text{ ppm (t}, J = 7.4 \text{ Hz}, 3\text{H}); {}^{13}\text{C NMR (CDCl}_{3}, 150 \text{ MHz}): δ = 159.6, 138.2, 131.6, 129.0, 128.5, 128.2, 127.7, 113.8, 88.6, 78.0, 70.4, 69.6, 55.4, 30.9, 22.1, 18.7, 13.8 \text{ ppm}; Found (EI): [M] 308.17794, C₂₁H₂₄O₂ requires 308.17708.$

2-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)furan (17d): IR (film) v = 2957, 2930, 2871, 2265, 1607 cm⁻¹; 1 H NMR (CDCl₃, 600 MHz): δ = 7.32 (d, J = 8.7, 2H), 7.30 (m, 1H), 6.86 (d, J = 8.7 Hz, 2H), 6.28 (br dd, J = 3.2, 1.9 Hz, 1H), 6.16 (br dt, J = 3.2, 0.9 Hz, 1H), 4.96 (br t, J = 2.2 Hz, 1H), 3.79 (s, 3H), 2.26 (td, J = 7.1, 2.2 Hz, 2H), 1.52 (app qn, J = 7.4 Hz, 2H), 1.43 (app sx, J = 7.4 Hz, 2H), 0.91 ppm (t, J = 7.4 Hz, 3H); 13 C NMR (CDCl₃, 150 MHz): δ = 158.8, 155.1, 142.1, 131.8, 128.9, 114.0, 110.3, 106.1, 84.2, 78.2, 55.4, 36.6, 31.1, 22.1, 18.7, 13.8 ppm; Found (EI): [M] 268.14630, $C_{18}H_{20}O_2$ requires 268.14577.

2-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)-5-methylfuran (17e): IR (film) v = 2956, 2932, 2871, 2837, 2249, 1609 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.32$ (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.02 (br d, J = 2.9 Hz, 1H), 5.86 (br dd, J = 2.9, 1.1 Hz, 1H), 4.91 (br s, 1H), 3.79 (s, 3H), 2.26 (td, J = 7.1, 2.2 Hz, 2H), 2.23 (s, 3H), 1.53 (app qn, J = 7.4 Hz, 2H), 1.43 (app sx, J = 7.4 Hz, 2H), 0.92 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 158.7$, 153.2, 151.7, 132.1, 128.9, 113.9, 106.8, 106.2, 84.0, 78.5, 55.4, 36.6, 31.1, 22.1, 18.7, 13.77, 13.76 ppm; Found (EI): [M] 282.16170, C₁₉H₂₂O₂ requires 282.16142.

3-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)pentane-2,4-dione (17f): IR (film) ν = 2957, 2928, 2871, 2160, 1700 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): δ = 7.23 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 4.36 (dt, J = 10.8, 2.3 Hz, 1H), 4.05 (d, J = 10.8 Hz, 1H), 3.78 (s, 3H), 2.30 (s, 3H), 2.16 (td, J = 7.1, 2.3 Hz, 2H), 1.89 (s, 3H), 1.47-1.41 (m, 2H), 1.35 (app sx, J = 7.4 Hz, 2H), 0.88 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ = 202.31, 202.29, 158.9, 130.9, 129.1, 114.2, 85.3, 79.0, 76.4, 55.4, 37.1, 31.4, 30.9, 28.6, 22.0, 18.5, 13.7 ppm; Found (EI): [M] 300.17241, C₁₉H₂₄O₃ requires 300.17200.

1-(Dec-1-en-5-yn-4-yl)-4-methoxybenzene (17g): $^{126c]}$ IR (film) v = 2958, 2933, 2873, 2250, 1641 cm $^{-1}$; 1 H NMR (CDCl₃, 600 MHz): δ = 7.27 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.86 (m, 1H), 5.07 (m, 2H), 3.79 (s, 3H), 3.68 (m, 1H), 2.45 (app t, J = 7.0 Hz, 2H), 2.25 (td, J = 7.0, 2.3 Hz, 2H), 1.51 (m, 2H), 1.42 (app sx, J = 7.4 Hz, 2H), 0.92 ppm (t, J = 7.4 Hz, 3H); 13 C NMR (CDCl₃, 150 MHz): δ = 158.4, 136.0, 134.2, 128.5, 116.3, 113.9, 84.0, 81.5, 55.4, 43.3, 37.6, 31.3, 22.1, 18.7, 13.8 ppm; Found (CI): [M+H] 243.17533, $C_{17}H_{22}O$ requires 243.17489.

t-Butyl (1-(4-methoxyphenyl)hept-2-yn-1-yl)carbamate (17h): IR (film) v = 3351, 2959, 2933, 2870, 2250, 1699 cm⁻¹; ¹H NMR (CDCl₃ 600 MHz): $\delta = 7.41$ (br d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.57 (br s, 1H), 4.96 (br s, 1H), 3.80 (s, 3H), 2.24 (td, J = 7.1, 2.1 Hz, 2H), 1.50 (app qn, J = 7.4 Hz, 2H), 1.40 (s, 9H), 1.40 (app sx, J = 7.4 Hz, 2H), 0.91 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 159.2$, 154.9, 132.6, 128.2, 113.9, 85.3, 80.0, 78.6, 55.4, 46.0, 30.8, 28.5, 22.1, 18.6, 13.7 ppm; Found (EI): [M] 340.1881, C₁₉H₂₇O₃NNa requires 340.1889.

N-(1-(4-Methoxyphenyl)hept-2-yn-1-yl)-4-methylbenzenesulfonamide (17i): IR (film) v = 3270, 2958, 2933, 2872, 2251 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.76$ (br d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.28 (br d, J = 8.1 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 5.24 (br dt, J = 8.8, 2.1 Hz, 1H), 4.79 (br d, J = 8.8 Hz, 1H), 3.78 (s, 3H), 2.42 (s, 3H), 1.96 (td, J = 7.0, 2.1 Hz, 2H), 1.30-1.22 (m, 4H), 0.85 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 159.6$, 143.3, 137.7, 130.4, 129.5, 128.7, 127.6, 114.0, 87.4, 76.9, 55.4, 49.1, 30.5, 22.0, 21.7, 18.3, 13.7 ppm; Found (ES): [M+Na] 394.1446, C₂₁H₂₅NO₃SNa requires 394.1453.

4,4'-(Oxybis(hept-2-yne-1,1-diyl))bis(methoxybenzene) (**17j):** Mixture of distereoisomers A and B, crude ratio of A:B was 1.3:1; IR (film) v = 2956, 2932, 2871, 2238 cm⁻¹; A: ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.47$ (d, J = 8.7 Hz, 4H), 6.86 (d, J = 8.7 Hz, 4H), 5.53 (br t, J = 1.9 Hz, 2H), 3.79 (s, 6H), 2.32 (td, J = 7.2, 1.9 Hz, 4H), 1.55 (m, 4H), 1.45 (app sx, J = 7.4 Hz, 4H), 0.93 (t, J = 7.4 Hz, 6H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 159.5$, 131.8, 129.2, 113.7, 88.5, 78.1, 69.2, 57.4, 30.9, 22.1, 18.7, 13.8 ppm; **B**: ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.41$ (d, J = 8.7 Hz, 4H), 6.88 (d, J = 8.7 Hz, 4H), 5.14 (br t, J = 1.9 Hz, 2H), 3.8 (s, 6H), 2.26 (td, J = 7.2, 1.9 Hz, 4H), 1.54-1.49 (m, 4H), 1.41 (app sx, J = 7.4 Hz, 4H), 0.91 ppm (t, J = 7.4 Hz, 6H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 159.7$, 131.5, 129.4, 113.9, 88.3, 78.4, 68.5, 55.4, 30.8, 22.2, 18.8, 13.8 ppm; Found (ES): [M+H] 419.2600, $C_{29}H_{35}O_3$ requires 419.2586.

Attempted Meyer-Schuster Rearrangement of Terminal Alkynes

Reaction of 18 using contaminated gold catalyst [22] according to General Procedure A gave a 1:5 mixture of 19 and 20, respectively. Reaction of 18 using a different batch of gold catalyst gave a mixture of compounds 19 and 21.

(*E*)-3-(4-Methoxyphenyl)acrylaldehyde (19): 1 H NMR (CDCl₃, 600 MHz): δ = 9.65 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 15.8 Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 6.62 (dd, J = 15.8, 7.6 Hz, 1H), 3.86 ppm (s, 3H); 13 C NMR (CDCl₃, 150 MHz): δ = 193.9, 162.3, 152.9, 127.9, 126.9, 126.7, 114.7, 55.64 ppm.

1-Methoxy-1-(4-methoxyphenyl)propan-2-one (**20**):^[37] Reaction of **22** according to General Procedure A with an uncontaminated batch of gold catalyst gave **20** as the sole product. IR (film) v = 3002, 2937, 2909, 1716 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.29$ (d, J = 8.5 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 4.61 (s, 1H), 3.81 (s, 3H), 3.35 (s, 3H), 2.10 ppm (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 206.8$, 160.1, 130.5, 128.5, 114.4, 89.0, 57.1, 55.4, 25.4 ppm;

1-Hydroxy-1-(4-methoxyphenyl)propan-2-one (21): General Procedure A: IR (film) $v = 3465, 3055, 2988, 1712 \text{ cm}^{-1}, {}^{1}\text{H NMR (CDCl}_{3}, 600 \text{ MHz})$: $\delta = 7.23 \text{ (d, } J = 8.9 \text{ Hz, 2H), } 6.91 \text{ (d, } J = 8.9 \text{ Hz, 2H), } 5.05 \text{ (br d, } J = 3.5 \text{ Hz, 1H), } 4.24 \text{ (br d, } J = 3.5 \text{ Hz, 1H), } 3.81 \text{ (s, 3H), } 2.07 \text{ ppm (s, 3H); } {}^{13}\text{C NMR (CDCl}_{3}, 150 \text{ MHz})$: $\delta = 207.5, 160.0, 130.1, 128.8, 114.5, 79.7, 55.4, 25.4 \text{ ppm; Found (EI): [M] } 180.07883, C_{10}\text{H}_{12}\text{O}_{3} \text{ requires } 180.07810.$

1-Methoxy-4-(1-methoxyprop-2-yn-1-yl)benzene (22): Prepared according to General Procedure B; IR (film) v = 2995, 2936, 2904, 2174 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.44$ (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 5.04 (br d, J = 2.1 Hz, 1H), 3.81 (s, 3H), 3.42 (s, 3H), 2.65 ppm (br d, J = 2.1 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 159.9$, 130.3, 128.9, 114.0, 81.6, 75.7, 72.5, 55.8, 55.4 ppm; Found (EI): [M] 176.08350, C₁₁H₁₂O₂ requires 176.08318.

One-Pot Syntheses of β-Substituted Ketones 30-33

Compounds 30a-d have previously been reported. [14]

General Procedure C (Preparation of compounds 31-33): $[Ph_3PAuNTf_2]_2PhMe$ (1 mol%) and alcohol (2 eq.) or 4-methoxyboronic acid (0.2 eq.) were added to a solution of propargylic alcohol in toluene (10 mL/g) and the solution stirred magnetically at room temperature until starting material had disappeared (TLC). After this time nucleophile (2 eq.) was added to the solution and it was stirred overnight at room temperature. The solvent was removed *in vacuo* and the crude product purified by column chromatography to give the β -substituted ketone.

1-(Benzyloxy)hexan-3-one (31a): IR (film) v = 2963, 2935, 2875, 1712 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): δ = 7.36-7.25 (m, 5H), 4.51 (s, 2H), 3.74 (t, J = 6.3 Hz, 2H), 2.69 (t, J = 6.3 Hz, 2H), 2.43 (t, J = 7.3 Hz, 2H), 1.59 (app sx, J = 7.4 Hz, 2H), 0.91 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ = 209.6, 138.2, 128.5, 127.81, 127.77, 73.4, 65.5, 45.5, 43.0, 17.1, 13.8 ppm; Found (EI): [M+H] 207.13812, $C_{13}H_{19}O_2$ requires 207.13850.

1-Isopropoxyhexan-3-one (31b): IR (film) $v = 2966, 2935, 2875, 1710 \text{ cm}^{-1}$; ¹H NMR (CDCl₃, 600 MHz): $\delta = 3.62$ (t, J = 6.5 Hz, 2H), 3.51 (septet, J = 6.1 Hz, 2H), 2.58 (t, J = 6.5 Hz, 2H), 2.37 (t, J = 7.4 Hz, 2H), 1.60 (app sx, J = 7.4 Hz, 2H), 1.08 (d, J = 6.1 Hz, 6H), 0.86 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 209.9, 71.8, 63.2, 45.4, 43.2, 22.1, 17.1, 13.8$ ppm; Found (EI): [M+H] 159.13881, $C_9H_{19}O_2$ requires 159.13850.

1-(Diethylamino)hexan-3-one (32a): IR (film) v = 2968, 2928, 2856, 1709 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 2.74$ (t, J = 7.5 Hz, 2H), 2.55 (t, J = 7.5 Hz, 2H), 2.50 (q, J = 7.3 Hz, 4H), 2.40 (t, J = 7.3 Hz, 2H), 1.59 (app sx, J = 7.4 Hz, 2H), 1.01 (t, J = 7.3 Hz, 6H), 0.91 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 210.9$, 47.4, 47.0, 45.3, 40.5, 17.3, 13.9, 11.8 ppm; Found (EI): [M] 171.16234, $C_{10}H_{21}ON$ requires 171.16177.

1-(Dibenzylamino)hexan-3-one (32b): IR (film) v = 2961, 2932, 2874, 1708 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.33-7.22$ (m, 10H), 3.55 (s, 4H), 2.76 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.23 (t, J = 7.4 Hz, 2H), 1.53 (app sx, J = 7.4 Hz, 2H), 0.85 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 210.6$, 139.5, 129.0, 128.3, 127.1, 58.4, 48.7, 44.6, 41.0, 17.2, 13.8 ppm; Found (EI): [M] 295.19352, C₂₀H₂₅NO requires 295.19307.

1-Morpholinohexan-3-one (**32c**): IR (film) v = 2960, 2855, 2809, 1709 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 3.68$ (br t, J = 4.6 Hz, 4H), 2.67-2.55 (m, 4H), 2.42 (br s, 4H), 2.40 (t, J = 7.4 Hz, 2H), 1.60 (app sx, J = 7.4 Hz, 2H), 0.90 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 209.9$, 67.0, 53.7, 53.2, 45.1, 40.1, 17.2, 13.8 ppm; Found (EI): [M] 186.15011, C₁₀H₂₀O₂N requires 186.14940.

1-(4-Methylpiperazin-1-yl)hexan-3-one (**32d**): IR (film) ν = 2961, 2936, 2876, 2794, 1711 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): δ = 2.65 (t, J = 7.1 Hz, 2H), 2.58 (t, J = 7.1, 2H), 2.39 (t, J = 7.4 Hz, 2H), 2.26 (s, 3H), 2.71-2.20 (m, 8H), 1.58 (app sx, J = 7.4 Hz, 2H), 0.89 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ = 210.2, 55.2, 53.1, 52.8, 46.1, 45.1, 40.4, 17.3, 13.9 ppm; Found (EI): [M] 198.17302, C₁₁H₂₂ON₂ requires 198.17266.

1-(1,2,3,4-Tetrahydroisoquinolin-2-yl)hexan-3-one (32e): IR (film) v = 2960, 2931, 2874, 1709 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.13-7.07$ (m, 3H), 7.01 (m, 1H), 3.63 (br s, 2H), 2.89 (br t, J = 6.0 Hz, 2H), 2.84 (t, J = 7.3 Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H), 2.44 (t, J = 7.4 Hz, 2H), 1.61 (app sx, J = 7.4 Hz, 2H), 0.91 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 210.2$, 134.5, 134.2, 128.7, 126.7, 126.3, 125.8, 56.2, 52.7, 51.1, 45.2, 40.8, 29.2, 17.3, 13.9 ppm; Found (EI): [M] 232.1707, C₁₅H₂₂ON requires 232.1701.

1-(Methyl(phenyl)amino)hexan-3-one (32f): IR (film) v = 2963, 2951, 2810, 1710 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz): $\delta = 7.24$ (m, 2H), 6.71 (m, 3H), 3.64 (t, J = 6.9 Hz, 2H), 2.92 (br s, 3H), 2.67 (t, J = 6.9 Hz, 2H), 2.38 (t, J = 7.4 Hz, 2H), 1.63-1.54 (2H, m, CH₂), 0.89 ppm (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): $\delta = 210.5$, 129.4, 128.7, 116.7, 112.5, 47.5, 45.6, 39.4, 38.6, 17.2, 13.8 ppm; Found (EI): [M] 205.14639 C₁₃H₁₉ON requires 20514612.

1-Hexylsulfanyl-hexan-3-one (33a): $^{1.581}$ IR (film) v = 2958, 2926, 2857, 1710 cm $^{-1}$; 1 H NMR (CDCl $_{3}$, 600 MHz): δ = 2.73 (m, 2H), 2.68 (m, 2H), 2.50 (t, J = 7.5 Hz, 2H), 2.40 (t, J = 7.5 Hz, 2H), 1.65-1.53 (m, 4H), 1.39-1.22 (m, 6H), 0.91 (t, J = 7.2 Hz, 3H), 0.88 ppm (t, J = 7.0 Hz, 3H); 13 C NMR (CDCl $_{3}$, 150 MHz): δ = 209.5, 45.1, 42.9, 32.6, 31.5, 29.7, 28.7, 25.9, 22.7, 17.3, 14.2, 13.8 ppm.

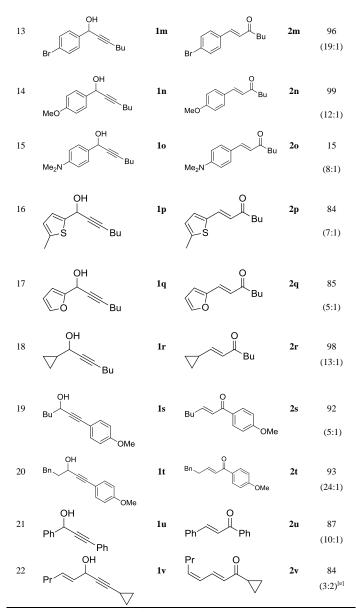
1-(Phenylthio)hexan-3-one (33b); 139 IR (film) v = 2961, 2933, 2875, 1710 cm $^{-1}$; 1 H NMR (CDCl $_{3}$, 600 MHz): δ = 7.35-7.32 (m, 2H), 7.31-7.27 (m, 2H), 7.21-7.18 (m, 1H), 3.14 (t, J = 7.4 Hz, 2H), 2.72 (t, J = 7.4 Hz, 2H), 2.37 (t, J = 7.4 Hz, 2H), 1.55 (m, 2H), 0.90 ppm (t, J = 7.4 Hz, 3H); 13 C NMR (CDCl $_{3}$, 150 MHz): δ = 209.2, 135.9, 129.5, 129.1, 126.4, 45.1, 42.2, 27.6, 17.3, 13.8 ppm.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EP/E052789/1, EP/G040680/1) and GlaxoSmithKline.

References

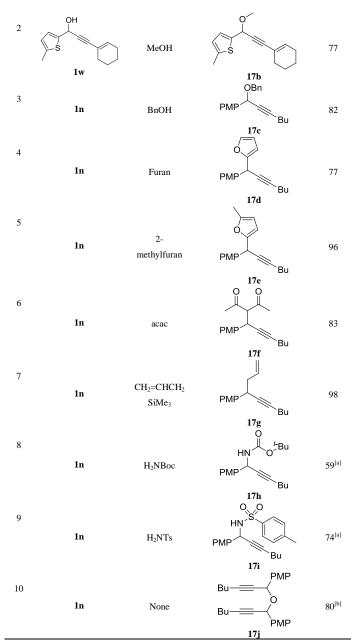
- [1] For a recent example, see: P. von Zezschwitz, Synthesis 2008, 12, 1809-1831.
- [2] For a recent example, see: D. B. Ramachary, K. Anebouselvy, N. S. Chowdari, C. F. Barbas III, J. Org. Chem. 2004, 69, 5838-5849.
- [3] V. K. Aggarwal, H. W. Smith, G. Hynd, R. V. H. Jones, R. Fieldhouse, S. E. Spey, J. Chem. Soc. Perkin Trans. 1 2000, 3267-3276.
- [4] For a recent example, see: C. Grondal, M. Jeanty, D. Enders, Nature. Chem. 2010, 2, 167-178.
- [5] a) G. Wittig, U. Schöllkopf, Chem. Ber. 1954, 87, 1318-1330; b) B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863-927.
- [6] a) L. Horner, H. M. R. Hoffmann, H. G. Wippel, Chem. Ber. 1958, 91, 61-63; b) W. S. Jr. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83, 1733-1738.
- [7] D. J. Peterson, J. Org. Chem. 1968, 33, 780-784.
- [8] K. H. Meyer, K. Schuster, Chem. Ber. 1922, 55, 819-823.
- [9] a) V. Cadierno, P. Crochet, S. E. Garcia-Garrido, J. Gimeno, Dalton Trans. 2010, 39, 4015-4031; b) D. A. Engel, G. B. Dudley, Org. Biomol. Chem. 2009, 7, 4149-4158.
- [10] a) K. Tanaka, T. Shoji, M. Hirano, Eur. J. Org. Chem. 2007, 2687-2699; b) M. Stefanoni, M. Luparia, A. Porta, G. Zanoni, G. Vidari, Chem. Eur. J. 2009, 15, 3940-3944; c) V. Cadierno, J. Francos, J. Gimeno, Tett. Lett. 2009, 50, 4773-4776.
- [11] a) N. Marion, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2750-2752; b) D. Garayalde, E. Gómez-Bengoa, X. Huang, A. Goeke, C. Nevado, J. Am. Chem. Soc. 2010, 132, 4720-4730. c) N. Marion, P. Carlqvist, R. Gealageas, P. de Frémont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007, 13, 6437-6451; d) G. Zanoni, A. D'Alfonso, A. Porta, L. Feliciani, S. P. Nolan, G. Vidari, Tetrahedron 2010, 66, 7472-7478; e) D. Wang, X. Ye, X. Shi, Org. lett. 2010, 12, 2088-2091; f) M. N. Hopkinson, G. T. Giuffredi, A. D. Gee, V. Gouverneur, Synlett 2010, 2737-2742; g) P. Nun, S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 9113-9115; h) T. de Haro, C. Nevado, Chem. Commun. 2010, 46, 248-249; i) Y. Wang, L. Biao, L. Zhang, Chem. Commun. 2010, 47, 9179-9181.
- [12] a) R. S. Ramón, N. Marion, S. P. Nolan, Tetrahedron 2009, 65, 1767-1773; b) M. Egi, Y. Yamaguchi, N. Fujiwara, S. Akai, Org. Lett. 2008, 10, 1867-1870; c) Y. Ye, L. Zhang, Org. Lett. 2009, 11, 3646-3649; d) R. Ramón, S. Gaillard, A. M. Z. Slawin, A. Porta, A. D'Alfonso, G. Zanoni, S. P. Nolan, Organometallics 2010, 29, 3665-3668; e) S. I. Lee, J. Y. Baek, S. H. Sim, Y. K. Chung, Synthesis 2007, 2107-2114; f) D. A. Engel, S. S. Lopez, G. B. Dudley, Tetrahedron 2008, 64, 6988-6996; g) D. A. Engel, G. B. Dudley, Org Lett. 2006, 8, 4027-4029. h) S. S. Lopez, D. A. Engel, G. B. Dudley, Synlett 2007, 949-953.
- [13] H. Zheng, M. Lejkowski, D. G. Hall, Chem. Sci. 2011, 2, 1305-1310.
- [14] M. N. Pennell, P. Turner, M. Unthank, T. D. Sheppard, J. Org. Chem. 2011, 76, 1479-1482.
- [15] a) A. Corma, A. Leyva-Pérez, M. J. Sabater, Chem. Rev. 2011, 111, 1657-1712; b) A. Pradal, P. Y. Toullec, V. Michelet, Synthesis 2011, 10, 1501-1514;
 c) J. Xiao, X. Li, Angew. Chem. Int. Ed. 2011, 32, 7226-7236; d) S. P. Nolan, Acc. Chem. Res. 2011, 44, 91-100; e) N. D. Shapiro, F. D. Toste, Synlett 2010, 675-691; f) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232-5241; g) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350; h) J. Muzart, Tetrahedron 2008, 64, 5815-5849. i) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351-3378. j) Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239-3265; k) A. Arcadi, Chem. Rev. 2008, 108, 3266-3325; l) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; m) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; n) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896-7936.
- [16] N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133-4136.
- [17] For Au(III)-catalyzed additions of electron-rich heterocycles to enones see: a) A. S. K. Hashmi, L. Schwarz, J. –H. Choi, T. M. Frost, Angew. Chem. Int. Ed. 2000, 39, 2285-2288; b) G. Dyker, E. Muth, A. S. K. Hashmi, L. Ding, Adv. Synth. Catal. 2003, 345, 1247-1252.
- [18] a) C. H. Jin, Y. D. Park, D. S. Choi, D. S. Kim, S-. J. Kang, I. Y. Jeong, H. J. Lee, K, -I, Seo, J. Agric. Food. Chem. 2010, 58, 860-867; b) H. Ito, Chem. Abstr. 1965, 62, 6336.
- [19] N. Jabri, A. Alexakis, J. F. Normant, Tetrahedron 1986, 42, 1369-1380.


- [20] A. S. Pilcher, P. DeShong, J. Org. Chem. 1996, 61, 6901-6905.
- [21] W. Xu, H. Jin, W. Zhang, X. Hu, J. Fu, S. Yan, W. Zheng, J. Su, Y. Shen, Chem. Nat. Compd. 2009, 3, 355-356.
- [22] Y. -G. Zhi, S. -W. Lai, Q. K. -W. Chan, Y-. C. Law, G. S. -M. Tong, C. -M. Che, Eur. J. Org. Chem. 2006, 3125-3139.
- [23] To the best of our knowledge there are no reported Au-catalyzed Meyer-Schuster rearrangements of substrates containing basic nitrogen atoms. Rearrangements of some nitrogen-containing substrates have been achieved using other catalysts however, see reference 13.
- [22] Unfortunately the 'contaminated' batch of gold catalyst had been used up so we were unable to analyse it for impurities.
- [23] For examples of Ag-catalyzed substitutions of alcohols: a) M. Bandini, A. Eichholzer, P. Kotrusz, M. Tragni, S. Troisi, A. Umani-Ronchi, Adv. Synth. Catal. 2009, 351, 319-324; b) B. Sreedhar, P. S. Reddy, M. A. Reddy, B. Neelima, R. Arundhathi, Tett. Lett. 2007, 48, 8174-8177.
- [24] For a recent mechanistic study on the generation of Brønsted acids from metal triflates, see: T. T. Dang, F. Boeck, L. Hintermann, *J. Org. Chem.* **2011**, 76, 9353–9361.
- [25] For comparisons of Brønsted acid and Au catalysis, see: a) C. M. Krauter, A. S. K. Hashmi, M. Pernpointner, ChemCatChem 2010, 2, 1226-1230; b) A. S. K. Hashmi, L. Schwarz, P. Rubenbauer, M. C. Blanco, Adv. Synth. Catal. 2006, 348, 705-708; c) A. S. K. Hashmi, Catal. Today 2007, 122, 211-214.
- [26] For examples of Au-catalyzed substitution of propargylic alcohols, see: a) E. Emer, R. Sinisi, M. G. Capdevila, D. Petruzziello, F. De Vincentiis, P. G. Cozzi, Eur. J. Org. Chem. 2011, 647-666; b) O. Debleds, E. Gayon, E. Vrancken, J-M. Campagne, Beilstein. J. Org. Chem. 2011, 7, 866-877; c) M. Georgy, V. Boucard, O. Debleds, C. Dal Zotto, J. –M. Campagne, Tetrahedron 2009, 65, 1758-1766; d) M. Georgy, V. Boucard, J. –M. Campagne, J. Am. Chem. Soc. 2005, 127, 14180-14181.
- [27] For a comparison of silver and gold catalysis, see: A. S. K. Hashmi in *Silver in Organic Chemistry* (Ed. M. Harmata), John Wiley and Sons, Inc, Hoboken, **2010**, 357-359.
- [28] For examples of Meyer-Schuster rearrangements which produce aldehydes, see reference 13.
- [29] For selected examples of Au-catalyzed hydrations, see: a) P. Nun, R. S. Ramón, S. Gaillard, S. P. Nolan, J. Organomet. Chem. 2011, 696, 7-11; b) L. Hintermann, A. Labonne, Synthesis 2007, 1121-1150; c) A. Corma, V. R. Ruiz, A. Leyva-Pérez, M. J. Sabater, Adv. Synth. Catal. 2010, 352, 1701-1710.
- [30] For the generation of boron enolates via Au-catalyzed addition of boronic acids to alkynes, see: C. Körner, P. Starkov, T. D. Sheppard, J. Am. Chem. Soc. 2010, 132, 5968-5969.
- [31] T. Yamamoto, M. Iizuka, H. Takenaka, T. Ohta, Y. Ito, J. Organomet. Chem. 2009, 694, 1325-1332.
- [32] M. Riccabonni, E. La Porta, A. Martorana, R. Attanasio, Tetrahedron 2010, 66, 4032-4034.
- [33] J. R. Dimmock, P. L. Carter, P. D. Ralph, J. Chem. Soc. 1968, 698-703.
- [34] M. Uyanik, R. Fukatsu, K. Ishihara, Org. Lett. 2009, 11, 3470-3473.
- [35] G. Y. Fang, V. K. Aggarwal, Angew. Chem. Int. Ed. 2007, 46, 359-362.
- [36] M. Shi, K. Shouki, Y. Okamoto, J. Takamuku, J. Chem. Soc. Perkin. Trans. I 1990, 9, 2443.
- [37] H. R. Sonawane, B. S. Nanjundiah, D. G. Kulkarni, J. R. Ahuja, *Tetrahedron* **1998**, 44, 7319-7324.
- [38] V. Chudasama, R. J. Fitzmaurice, J. M. Ahern, S. Caddick, Chem. Commun. 2010, 46, 133-135.
- [39] H. Ahlbrecht, M. Ibe, Synthesis 1988, 210.

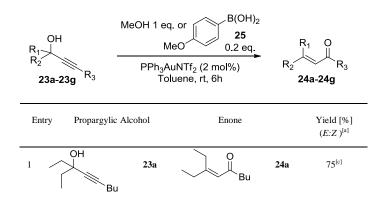
Scheme and Figure Legends

- Scheme 1. Convenient access to α,β -unsaturated carbonyl compounds.
- Scheme 2. Two-step synthesis of *E*-Isoegomaketone.
- Scheme 3. Synthesis of Daphenone *via* a Meyer-Schuster rearrangement.
- Scheme 4. Attempted Meyer-Schuster rearrangement of nitrogen-containing compounds.
- Scheme 5. Substitution of the propargylic alcohol with 'contaminated' Au catalyst.
- Scheme 6. Competition between the Au and Ag-catalyzed reactions of alcohol **1n**.
- Scheme 7. Ag/Au-catalyzed reactions of terminal alkynes in the presence of MeOH.
- Scheme 8. Enhancement of the E:Z ratio via addition of boronic acid 25.
- Scheme 9. Meyer-Schuster rearrangement of a primary propargylic alcohols with MeOH as the additive.

Table 1. Meyer-Schuster rearrangement of secondary propargylic alcohols


1	a-1v K	Toluene	, rt, 1-3h	2	a-2v
Entr	y Propargylic Alc	ohol	Enone		Yield [%] (E:Z) ^[a]
1	OH Pr Bu	1a	Pr	2a	91 83 ^[b]
2	OH Pr	1b	O Pr	2b	(17:1) 80 ^[c]
3	OH Pr	1c	Pr	2c	(14:1)
4	OH Pr	1d	O Pr Ph	2d	(7:1) 99
5	OH Pr	1e	Pr CF ₃	2e	(8:1) 97 (18:1)
6	OH Pr	1f	Pr OMe	2f	99 (6:1)
7	OH Pr	1g	Pr	2g	88 (11:1)
8	OH Bn OEt	1h	BnOEt	2h	91 ^[d] (20:1)
9	OH Ph Bu	1i	Ph Bu	2i	96 (20:1)
10	OH Bu	1j	Bu	2j	98 (18:1)
11	ОН	1k	Bu	2k	77 (15:1)
12	OH F ₃ C	11	F ₃ C Bu	21	78 (18:1)

[a] E:Z ratio measured by crude 1H NMR. [b] 1 g scale with 1 mol% catalyst. [c] 16 h at room temperature. [d] EtOH was used instead of MeOH. [e] crude E,E:E,Z ratio, after chromatography the pure E:Z isomer was obtained.


Table 2. Ag-catalyzed substitution reactions of propargylic alcohols

OH .		NuH 2 eq.		Nu 	
R^{1} R^{2} 1n or 1w		AgNTf ₂ (1 mc Toluene, rt, 5-	ol%)	R ¹ R ²	
Entry	Propargylic Alcohol	NuH	Product	Yield	
1	1n	МеОН	0 MeO 17a	76 Bu	

[a] 60°C overnight. [b] 1.3:1 mixture of diastereoisomers.

Table 3. Meyer-Schuster rearrangement of tertiary propargylic alcohols.

[a]crude ratio determined by ¹H NMR [b] With 0.2 eq. boronic acid 25, 16 h at rt. [c] With 1 eq. MeOH, 6 h at rt.

Table 4. Rearrangement of primary propargylic alcohols and addition of nucleophiles to the resulting terminal enones

OH
$$R^{2}$$
 OH or ArB(OH)₂ R^{1} PPh₃AuNTf₂ (2 mol%) R^{1} 28a-28b R^{1} 30 X=Ar R^{1} 31 X=OR² 27b R¹ = Ph R^{1} 32 X=NR³R⁴ 33 X=SR⁵

Entry ^[a]	'Nucleophile'	Product ^[c]	Yield
1	25 /cat. Pd	O 30a	81
2	25 /cat. Pd	MeO 30b	58
3	PhB(OH) ₂ /cat. Pd	O 30c	45
4	o-tolylB(OH) ₂ /cat. Pd	O 30d	. 39
5	BnOH	O BnO Pr	63
6	ⁱ⁻ PrOH	O Pr 31b	76
7	$HNEt_2$	O Et ₂ N Pr	70
8	Bn_2NH	O Bn ₂ N Pr	65
9	Morpholine	O Pr 32c	83

10	N-Methyl piperazine	N Pr	32d	79
11	Tetrahydroisoquinoline	N Pr	32e	84
12	PhNHMe	O Pr	32f	52
13	n-hexylSH	n-Hex S Pr	33a	41
14	PhSH	PhS	33b	46

Text for ToC

'Enones Made Easy'

Primary, secondary and tertiary propargylic alcohols undergo efficient Au-catalyzed Meyer-Schuster rearrangement, in the presence of protic additives. The rearrangement of primary alcohols can be combined with the addition of nucleophiles to the resulting enone to give β -substituted ketones in a one-pot procedure. Electron-rich propargylic alcohols undergo Ag-catalyzed substitution with a variety of oxygen, carbon and nitrogen nucleophiles.

Keywo	ords
-------	------

Gold

Meyer-Schuster Rearrangement

Propargylic Alcohols

Silver

Homogeneous Catalysis