82 research outputs found

    The impact of COVID-19 and associated measures on health, police, and non-government organisation service utilisation related to violence against women and children

    Get PDF
    Background: Globally, concerns have been raised that the priority implementation of public health measures in response to COVID-19 may have unintended negative impacts on a variety of other health and wellbeing factors, including violence. This study examined the impact of COVID-19 response measures on changes in violence against women and children (VAWC) service utilisation across European countries. Methods: A rapid assessment design was used to compile data including a survey distributed across WHO Europe Healthy Cities Networks and Violence Injury Prevention Focal Points in WHO European Region member states, and a scoping review of media reports, journal articles, and reports. Searches were conducted in English and Russian and covered the period between 1 January 2020 and 17 September 2020. Data extracted included: country; violence type; service sector; and change in service utilisation during COVID-19. All data pertained to the period during which COVID-19 related public health measures were implemented compared to a period before restrictions were in place. Results: Overall, findings suggested that there was a median reported increase in VAWC service utilisation of approximately 20% during the COVID-19 pandemic. Crucially, however, change in service utilisation differed across sectors. After categorising each estimate as reflecting an increase or decrease in VAWC service utilisation, there was a significant association between sector and change in service utilisation; the majority of NGO estimates (95.1%) showed an increase in utilisation, compared to 58.2% of law enforcement estimates and 42.9% of health and social care estimates. Conclusions: The variation across sectors in changes in VAWC service utilisation has important implications for policymakers in the event of ongoing and future restrictions related to COVID-19, and more generally during other times of prolonged presence in the home. The increased global attention on VAWC during the pandemic should be used to drive forward the agenda on prevention, increase access to services, and implement better data collection mechanisms to ensure the momentum and increased focus on VAWC during the pandemic is not wasted

    Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force

    Get PDF
    Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups

    Association between Frequency Domain Heart Rate Variability and Unplanned Readmission to Hospital in Geriatric Patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An accurate prediction of unplanned readmission (UR) after discharge from hospital can facilitate physician's decision making processes for providing better quality of care in geriatric patients. The objective of this study was to explore the association of cardiac autonomic functions as measured by frequency domain heart rate variability (HRV) and 14-day UR in geriatric patients.</p> <p>Methods</p> <p>Patients admitted to the geriatric ward of a regional hospital in Chiayi county in Taiwan were followed prospectively from July 2006 to June 2007. Those with invasive tubes and those who were heavy smokers, heavy alcohol drinkers, on medications that might influence HRV, or previously admitted to the hospital within 30 days were excluded. Cardiac autonomic functions were evaluated by frequency domain indices of HRV. Multiple logistic regression was used to assess the association between UR and HRV indices adjusted for age and length of hospitalization.</p> <p>Results</p> <p>A total of 78 patients met the inclusion criteria and 15 of them were readmitted within 14 days after discharge. The risk of UR was significantly higher in patients with lower levels of total power (OR = 1.39; 95% CI = 1.04-2.00), low frequency power (LF) (OR = 1.22; 95% CI = 1.03-1.49), high frequency power (HF) (OR = 1.27; 95% CI = 1.02-1.64), and lower ratios of low frequency power to high frequency power (LF/HF ratio) (OR = 1.96; 95% CI = 1.07-3.84).</p> <p>Conclusion</p> <p>This is the first study to evaluate the association between frequency domain heart rate variability and the risk of UR in geriatric patients. Frequency domain heart rate variability indices measured on admission were significantly associated with increased risk of UR in geriatric patients. Additional studies are required to confirm the value and feasibility of using HRV indices on admission as a non-invasive tool to assist the prediction of UR in geriatric patients.</p

    Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development

    Get PDF
    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Prostate Cancer Induced by Loss of Apc Is Restrained by TGFβ Signaling

    Get PDF
    Recent work with mouse models of prostate cancer (CaP) has shown that inactivation of TGFβ signaling in prostate epithelium can cooperate with deletion of the Pten tumor suppressor to drive locally aggressive cancer and metastatic disease. Here, we show that inactivating the TGFβ pathway by deleting the gene encoding the TGFβ type II receptor (Tgfbr2) in combination with a deletion of the Apc tumor suppressor gene specifically in mouse prostate epithelium, results in the rapid onset of invasive CaP. Micro-metastases were observed in the lymph nodes and lungs of a proportion of the double mutant mice, whereas no metastases were observed in Apc single mutant mice. Prostate-specific Apc;Tgfbr2 mutants had a lower frequency of metastasis and survived significantly longer than Pten;Tgfbr2 double mutants. However, all Apc;Tgfbr2 mutants developed invasive cancer by 30 weeks of age, whereas invasive cancer was rarely observed in Apc single mutant animals, even by one year of age. Further comparison of the Pten and Apc models of CaP revealed additional differences, including adenosquamous carcinoma in the Apc;Tgfbr2 mutants that was not seen in the Pten model, and a lack of robust induction of the TGFβ pathway in Apc null prostate. In addition to causing high-grade prostate intra-epithelial neoplasia (HGPIN), deletion of either Pten or Apc induced senescence in affected prostate ducts, and this restraint was overcome by loss of Tgfbr2. In summary, this work demonstrates that TGFβ signaling restrains the progression of CaP induced by different tumor suppressor mutations, suggesting that TGFβ signaling exerts a general tumor suppressive effect in prostate.This work was supported by a Program Project Grant from the National Cancer Institute (2P01CA104106 to B. Paschal and D. Wotton), and by a pilot grant from the UVA Cancer Center (funded from the CCSG P30 CA44579, the James and Rebecca CraigFoundation, and UVA Women's Oncology fund) to D. Wotton. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Sharon Birdsall for technical assistance, Anindya Dutta and Dan Gioeli for helpful discussions, and Chun-Song Yang for advice and reagent
    corecore