111 research outputs found

    The Effect of stem cell mobilisation with granulocyte colony-stimulating factor on the morphology of the haematopoietic organs in mice

    Get PDF
    The cellular mobilisation of mice with granulocyte colony-stimulating factor (G-CSF) results in an egress of haematopoietic stem/progenitor cells from the bone marrow and an increase in their level in the peripheral blood. While the mobilisation process with different agents is widely studied, little is known about the morphology of the murine haematopoietic organs during the mobilisation. The purpose of this study was to examine the morphology of the bone marrow, spleen and liver in mice mobilised with G-CSF. To address this issue mice were injected subcutaneously with G-CSF for 6 consecutive days. Morphological analysis revealed an increase in the number of mature neutrophils close to the wall of sinusoids in the bone marrow as well as hypertrophy of the red pulp in the spleen. At the same time no morphological changes were noticed in the livers of G-CSF-mobilised mice. In conclusion, G-CSF induces discrete ultrastructural changes in the bone marrow, which intensify the transendothelial traverse of haematopoietic stem and progenitor cells from it. The changes in the spleen are related to repopulation of this organ by mobilised early haematopoietic cells circulating in the peripheral blood. We also noticed that the process of migration of haematopoietic cells from the bone marrow into the peripheral blood began on day 2 and was most pronounced on day 4 after stimulation with G-CSF

    Enhanced pharmacological efficacy of sumatriptan due to modification of its physicochemical properties by inclusion in selected cyclodextrins

    Get PDF
    The study focused on the pharmacological action of sumatriptan, in particular its antiallodynic and antihyperalgesic properties, as an effect of cyclodextrinic inclusion of sumatriptan, resulting in changes of its physicochemical qualities such as dissolution and permeability through artificial biological membranes, which had previously been examined in vitro in a gastro-intestinal model. The inclusion of sumatriptan into β-cyclodextrin and 2-hydroxylpropylo-β-cyclodextrin by kneading was confirmed with the use of spectral (fourier-transform infrared spectroscopy (FT-IR); solid state nuclear magnetic resonance spectroscopy with magic angle spinning condition, 1H and 13C MAS NMR) and thermal (differential scanning calorimetry (DSC)) methods. A precise indication of the domains of sumatriptan responsible for its interaction with cyclodextrin cavities was possible due to a theoretical approach to the analysis of experimental spectra. A high-performance liquid chromatography with a diode-array detector method (HPLC-DAD) was employed to determine changes in the concentration of sumatriptan during dissolution and permeability experiments. The inclusion of sumatriptan in complex with cyclodextrins was found to significantly modify its dissolution profiles by increasing the concentration of sumatriptan in complexed form in an acceptor solution compared to in its free form. Following complexation, sumatriptan manifested an enhanced ability to permeate through artificial biological membranes in a gastro-intestinal model for both cyclodextrins at all pH values. As a consequence of the greater permeability of sumatriptan and its increased dissolution from the complexes, an improved pharmacological response was observed when cyclodextrin complexes were applied

    Combined deletion and DNA methylation result in silencing of FAM107A gene in laryngeal tumors

    Get PDF
    Larynx squamous cell carcinoma (LSCC) is characterized by complex genotypes, with numerous abnormalities in various genes. Despite the progress in diagnosis and treatment of this disease, 5-year survival rates remain unsatisfactory. Therefore, the extended studies are conducted, with the aim to find genes, potentially implicated in this cancer. In this study, we focus on the FAM107A (3p14.3) gene, since we found its significantly reduced expression in LSCC by microarray profiling (Affymetrix U133 Plus 2.0 array). By RT-PCR we have confirmed complete FAM107A downregulation in laryngeal cancer cell lines (15/15) and primary tumors (21/21) and this finding was further supported by FAM107A protein immunohistochemistry (15/15). We further demonstrate that a combined two hit mechanism including loss of 3p and hypermethylation of FAM107A promoter region (in 9/15 cell lines (p p FAM107A expression (5 to 6 fold increase) in the UT-SCC-29 cell line, characterized by high DNA methylation. Therefore, we report the recurrent inactivation of FAM107A in LSCC, what may suggest that the gene is a promising tumor suppressor candidate involved in LSCC development.</p

    Neuronal hypoxia in vitro: Investigation of therapeutic principles of HUCB-MNC and CD133+ stem cells

    Get PDF
    Background The therapeutic capacity of human umbilical cord blood mononuclear cells (HUCB-MNC) and stem cells derived thereof is documented in animal models of focal cerebral ischemia, while mechanisms behind the reduction of lesion size and the observed improvement of behavioral skills still remain poorly understood. Methods A human in vitro model of neuronal hypoxia was used to address the impact of total HUCB-MNC (tMNC), a stem cell enriched fraction (CD133+, 97.38% CD133-positive cells) and a stem cell depleted fraction (CD133-, 0.06% CD133-positive cells) of HUCB-MNC by either direct or indirect co-cultivation with post-hypoxic neuronal cells (differentiated SH-SY5Y). Over three days, development of apoptosis and necrosis of neuronal cells, chemotaxis of MNC and production of chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9) and growth factors (G-CSF, GM-CSF, VEGF, bFGF) were analyzed using fluorescence microscopy, FACS and cytometric bead array. Results tMNC, CD133+ and surprisingly CD133- reduced neuronal apoptosis in direct co-cultivations significantly to levels in the range of normoxic controls (7% ± 3%). Untreated post-hypoxic control cultures showed apoptosis rates of 85% ± 11%. tMNC actively migrated towards injured neuronal cells. Both co-cultivation types using tMNC or CD133- reduced apoptosis comparably. CD133- produced high concentrations of CCL3 and neuroprotective G-CSF within indirect co-cultures. Soluble factors produced by CD133+ cells were not detectable in direct co-cultures. Conclusion Our data show that heterogeneous tMNC and even CD133-depleted fractions have the capability not only to reduce apoptosis in neuronal cells but also to trigger the retaining of neuronal phenotypes

    Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology : recent pros and cons in the midst of a lively debate

    Get PDF
    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Pathogenic germline variants in 10,389 adult cancers

    Get PDF
    We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer
    corecore