574 research outputs found

    Small-scale mechanical response of cemented carbides: Correlation between mechanical properties and microstructure

    Get PDF
    The unique combination of hardness, toughness and wear resistance exhibited by heterogeneous hard materials (e.g. cemented carbides, PCD composites, PcBN systems and generic hard coating/substrate combinations) has made them preeminent material choices for extremely demanding applications, such as metal cutting/forming tools or mining bits, where improved and consistent performance together with high reliability are required. The remarkable mechanical properties of these materials results from a two-fold effectiveness associated with their intrinsic composite character. On the one hand in terms of composite nature: combination of completely different phases (hard, brittle and soft, ductile constituents) with optimal interface properties. On the other hand as related to composite assemblage: two interpenetrating-phase networks where toughening is optimized through different mechanisms depending on the relatively different chemical nature among them. In particular, this presentation is focused on WC-Co hardmetals, as reference hard material. Large number of studies has been reported, mainly focused on the mechanical behavior of this composite. On the other hand, information on the small-scale mechanical response of these materials is rather scarce. This is particularly true regarding experimental data and analysis on the influence of phase nature, crystal orientation (anisotropy) and interfacial adhesion strength on hardness, deformation and/or damage mechanisms. It is clear that knowledge of these issues is crucial not only to improve the performance of hardmetals but also to develop ceramic-metal composites beyond WC-Co systems. A systematic micro- and nanomechanical study of the mechanical response of several microstructurally different WC-Co grades is presented. In doing so, nanoindentation technique is implemented and corresponding deformation/damage mechanisms are also investigated. In general, five different approaches are followed to accomplish the main goal of this research: (1) assessment of intrinsic hardness values and main deformation mechanisms as a function of crystal orientation for the carbide phase at room temperature (RT) and also at high temperature (from RT to 600 ÂșC), (2) determination of effective hardness and flow stress of the metallic binder through massive nanoindentation and statistical analysis, (3) evaluation of the Hall-Petch parameters for the WC-Co as a function of a microstructural parameter (mean free path) by using the methodology presented above, (4) correlation of the microstructure with the hardness and elastic modulus map by using high indentation speed tests, and (5) study of the stress-strain response by means of ex/in-situ compression of micropillars. It is found that WC-Co composites are strongly anisotropic in terms of hardness at the small scale (microstructure), being the WC hardness for the basal plane about 20-30% higher than for the prismatic and pyramidal planes. It implies consideration of carbides with different crystal orientations as distinct phases for statistical analysis of massive nanoindentation data. Implementation of such testing/analysis protocol indicates a flow stress for the constrained Co-based binder of about 2.6-3.5 GPa. By plotting of the experimentally data as a function of the binder mean free path results in a Hall-Petch strengthening relationship. Finally, the compression of micropillars points out that main deformation mechanisms are located in the metallic binder although close to the strong interface exhibited by these materials

    Characterization of Loading Responses and Failure Loci of a Boron Steel Spot Weld

    Get PDF
    Boron steel, classed as an ultra high-strength steel (UHSS), has been utilized in anti-intrusion systems in automobiles, providing high strength and weight-saving potential through gage reduction. UHSS spot welds exhibit unique hardness distributions, with a hard nugget and outlying base material, but with a soft heat-affected zone in-between these regions. This soft zone reduces the strength of the weld and makes it susceptible to failure. Due to the interaction of various weld zones that occurs during loading, there is a need to characterize the loading response of the weld for accurate failure predictions. The loading response of certain weld zones, as well as failure loci, was obtained through physical simulation of the welding process. The results showed a significant difference in mechanical behavior through the weld length. An important result is that instrumented indentation was shown to be a valid, quantitative method for verifying the accuracy with which weld microstructure has been recreated with regard to the target weld microstructure

    The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour

    Get PDF
    Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect

    Mouse Retinal Development: a Dark Horse Model for Systems Biology Research

    Get PDF
    The developing retina is an excellent model to study cellular fate determination and differentiation in the context of a complex tissue. Over the last decade, many basic principles and key genes that underlie these processes have been experimentally identified. In this review, we construct network models to summarize known gene interactions that underlie determination and fundamentally affect differentiation of each retinal cell type. These networks can act as a scaffold to assemble subsequent discoveries. In addition, these summary networks provide a rational segue to systems biology approaches necessary to understand the many events leading to appropriate cellular determination and differentiation in the developing retina and other complex tissues

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Clinic-level factors associated with retention in care among people living with human immunodeficiency virus in a multisite US Cohort, 2010–2016

    Get PDF
    Background. Retention in care (RIC) leads to reduced HIV transmission and mortality. Few studies have investigated clinic services and RIC among people living with HIV (PLWH) in the United States. We conducted a multisite retrospective cohort study to identify clinic services associated with RIC from 2010–2016 in the United States. Methods. PLWH with ≄1 HIV primary care visit from 2010–2016 at 7 sites in the Centers for AIDS Research Network of Integrated Clinical Systems (CNICS) were included. Clinic-level factors evaluated via site survey included patients per provider/ trainee, navigation, RIC posters/brochures, laboratory test timing, flexible scheduling, appointment reminder methods, and stigma support services. RIC was defined as ≄2 encounters per year, ≄90 days apart, observed until death, administrative censoring (31 December 2016), or loss to follow-up (censoring at first 12-month interval without a visit with no future visits). Poisson regression with robust error variance, clustered by site adjusting for calendar year, age, sex, race/ethnicity, and HIV transmission risk factor, estimated risk ratios (RRs) and 95% confidence intervals (CIs) for RIC. Results. Among 21 046 PLWH contributing 103 348 person-years, 67% of person-years were retained. Availability of text appointment reminders (RR, 1.13; 95% CI, 1.03–1.24) and stigma support services (RR, 1.11; 95% CI, 1.04–1.19) were associated with better RIC. Disparities persisted for age, sex, and race. Conclusions. Availability of text appointment reminders and stigma support services was associated with higher rates of RIC, indicating that these may be feasible and effective approaches for improving RIC

    Dynamic deformation of metastable austenitic stainless steels at the nanometric length scale

    Get PDF
    Cyclic indentation was used to evaluate the dynamic deformation on metastable steels, particularly in an austenitic stainless steel, AISI 301LN. In this work, cyclic nanoindentation experiments were carried out and the obtained loading-unloading (or P-h) curves were analyzed in order to get a deeper knowledge on the time-dependent behavior, as well as the main deformation mechanisms. It was found that the cyclic P-h curves present a softening effect due to several repeatable features (pop-in events, ratcheting effect, etc.) mainly related to dynamic deformation. Also, observation by transmission electron microscopy highlighted that dislocation pile-up is the main responsible of the secondary pop-ins produced after certain cycles.Peer ReviewedPostprint (author's final draft
    • 

    corecore