82 research outputs found

    The Biosynthesis of Enzymatically Oxidized Lipids

    Get PDF
    Enzymatically oxidized lipids are a specific group of biomolecules that function as keysignaling mediators and hormones, regulating various cellular and physiological processesfrom metabolism and cell death to inflammation and the immune response. They arebroadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acidoxygenated PUFA “oxylipins”, endocannabinoids, oxidized phospholipids) or cholesterolderivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis isaccomplished by families of enzymes that include lipoxygenases (LOX),cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). Incontrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation andare broadly considered to be harmful. Here, we provide an overview of the biochemistryand enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we presentbiosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids andsteroid hormones. Last, we address gaps in knowledge and suggest directions forfuture work

    Application of 4,5-diaminofluorescein to reliably measure nitric oxide released from endothelial cells in vitro

    Get PDF
    Here we describe in more depth the previously published application of the fluorescent probe 4,5-diaminofluorescein (DAF-2) in order to reliably measure low levels of nitric oxide (NO) as released from human endothelial cells in vitro. The used approach is based on the following considerations a) use low concentrations of DAF-2 (0.1 µM) in order to reduce the contribution of DAF-2 auto-fluorescence to the measured total fluorescence, and b) subtract the DAF-2 auto-fluorescence from the measured total fluorescence. The advantage of this method is the reliable quantification of NO in a biological system in the nanomolar range once thoroughly validated. Here we focus in addition to the previous publication (Leikert et al., FEBS Lett 2001, 506:131-134) on aspects of validation procedures as well as limitations and pitfalls of this method

    The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).

    Get PDF
    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Current potential and limitations of molecular diagnostic methods in head and neck cancer

    Get PDF
    Item does not contain fulltextTraditional diagnostic methods such as clinical assessment, histopathological examination and imaging techniques are limited in their capacity to provide information on prognosis and treatment choice of head and neck cancer. In recent years, molecular techniques have been developed that enabled us to get more insight into the molecular biological cellular pathways underlying tumor progression and metastasis. Correlation of these molecular changes with clinical events has been explored. However, consistently useful markers have not been identified yet, although many promising developments are in progress. It may be expected that in the near future, molecular markers will be useful for clinical purposes. In this paper, an overview will be given of the several molecular techniques that may have potential to be introduced in clinical practice in the management of head and neck squamous cell carcinoma.1 juni 201
    corecore