66 research outputs found

    Characterization of the Molecular Determinants of Primary HIV-1 Vpr Proteins: Impact of the Q65R and R77Q Substitutions on Vpr Functions

    Get PDF
    Although HIV-1 Vpr displays several functions in vitro, limited information exists concerning their relevance during infection. Here, we characterized Vpr variants isolated from a rapid and a long-term non-progressor (LTNP). Interestingly, vpr alleles isolated from longitudinal samples of the LTNP revealed a dominant sequence that subsequently led to diversity similar to that observed in the progressor patient. Most of primary Vpr proteins accumulated at the nuclear envelope and interacted with host-cell partners of Vpr. They displayed cytostatic and proapoptotic activities, although a LTNP allele, harboring the Q65R substitution, failed to bind the DCAF1 subunit of the Cul4a/DDB1 E3 ligase and was inactive. This Q65R substitution correlated with impairment of Vpr docking at the nuclear envelope, raising the possibility of a functional link between this property and the Vpr cytostatic activity. In contradiction with published results, the R77Q substitution, found in LTNP alleles, did not influence Vpr proapoptotic activity

    Innate Immune Function in Placenta and Cord Blood of Hepatitis C – Seropositive Mother-Infant Dyads

    Get PDF
    Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in ∼80% of cases following exposure, the rate of mother-to-child transmission (2–6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and γδ-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells

    Hepatitis C Virus (HCV) Evades NKG2D-Dependent NK Cell Responses through NS5A-Mediated Imbalance of Inflammatory Cytokines

    Get PDF
    Understanding how hepatitis C virus (HCV) induces and circumvents the host's natural killer (NK) cell-mediated immunity is of critical importance in efforts to design effective therapeutics. We report here the decreased expression of the NKG2D activating receptor as a novel strategy adopted by HCV to evade NK-cell mediated responses. We show that chronic HCV infection is associated with expression of ligands for NKG2D, the MHC class I-related Chain (MIC) molecules, on hepatocytes. However, NKG2D expression is downmodulated on circulating NK cells, and consequently NK cell-mediated cytotoxic capacity and interferon-γ production are impaired. Using an endotoxin-free recombinant NS5A protein, we show that NS5A stimulation of monocytes through Toll-like Receptor 4 (TLR4) promotes p38- and PI3 kinase-dependent IL-10 production, while inhibiting IL-12 production. In turn, IL-10 triggers secretion of TGFβ which downmodulates NKG2D expression on NK cells, leading to their impaired effector functions. Moreover, culture supernatants of HCV JFH1 replicating Huh-7.5.1 cells reproduce the effect of recombinant NS5A on NKG2D downmodulation. Exogenous IL-15 can antagonize the TGFβ effect and restore normal NKG2D expression on NK cells. We conclude that NKG2D-dependent NK cell functions are modulated during chronic HCV infection, and demonstrate that this alteration can be prevented by exogenous IL-15, which could represent a meaningful adjuvant for therapeutic intervention

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Testing devices for the prevention and treatment of stroke and its complications

    Get PDF
    We are entering a challenging but exciting period when many new interventions may appear for stroke based on the use of devices. Hopefully these will lead to improved outcomes at a cost that can be afforded in most parts of the world. Nevertheless, it is vital that lessons are learnt from failures in the development of pharmacological interventions (and from some early device studies), including inadequate preclinical testing, suboptimal trial design and analysis, and underpowered studies. The device industry is far more disparate than that seen for pharmaceuticals; companies are very variable in size and experience in stroke, and are developing interventions across a wide range of stroke treatment and prevention. It is vital that companies work together where sales and marketing are not involved, including in understanding basic stroke mechanisms, prospective systematic reviews, and education of physicians. Where possible, industry and academics should also work closely together to ensure trials are designed to be relevant to patient care and outcomes. Additionally, regulation of the device industry lags behind that for pharmaceuticals, and it is critical that new interventions are shown to be safe and effective rather than just feasible. Phase IV postmarketing surveillance studies will also be needed to ensure that devices are safe when used in the ‘real-world’ and to pick up uncommon adverse events

    European Multicentre Tics in Children Studies (EMTICS): protocol for two cohort studies to assess risk factors for tic onset and exacerbation in children and adolescents

    Get PDF
    Genetic predisposition, autoimmunity and environmental factors [e.g. pre- and perinatal difficulties, Group A Streptococcal (GAS) and other infections, stress-inducing events] might interact to create a neurobiological vulnerability to the development of tics and associated behaviours. However, the existing evidence for this relies primarily on small prospective or larger retrospective population-based studies, and is therefore still inconclusive. This article describes the design and methodology of the EMTICS study, a longitudinal observational European multicentre study involving 16 clinical centres, with the following objectives: (1) to investigate the association of environmental factors (GAS exposure and psychosocial stress, primarily) with the onset and course of tics and/or obsessive-compulsive symptoms through the prospective observation of at-risk individuals (ONSET cohort: 260 children aged 3-10 years who are tic-free at study entry and have a first-degree relative with a chronic tic disorder) and affected individuals (COURSE cohort: 715 youth aged 3-16 years with a tic disorder); (2) to characterise the immune response to microbial antigens and the host's immune response regulation in association with onset and exacerbations of tics; (3) to increase knowledge of the human gene pathways influencing the pathogenesis of tic disorders; and (4) to develop prediction models for the risk of onset and exacerbations of tic disorders. The EMTICS study is, to our knowledge, the largest prospective cohort assessment of the contribution of different genetic and environmental factors to the risk of developing tics in putatively predisposed individuals and to the risk of exacerbating tics in young individuals with chronic tic disorders

    Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis

    Get PDF

    Multiple sclerosis: risk factors, prodromes, and potential causal pathways.

    No full text
    Multiple sclerosis (MS) is a common, complex neurological disease. The precise aetiology of MS is not yet known, although epidemiological data indicate that both genetic and environmental factors are important. The evidence that the environment acts long before MS becomes clinically evident is well established and suggests the existence of a prodromal phase for the disease. The increasing incidence of MS emphasises the need for strategies to prevent this chronic disorder, and the possibility of a prodrome indicates a window of opportunity to potentially reverse early disease processes before clinical disease becomes evident. Studying a prodrome requires techniques other than clinical observation such as monitoring endophenotypes that result from associated risk factors. However, our current knowledge of causal pathways and endophenotypes in MS is limited. Identifying and studying individuals with a high risk of developing the disease provides a powerful opportunity to understand the MS causal cascade and is highly relevant to strategies that are aimed at preventing this debilitating disease

    The effect of simvastatin on autophagy in mammalian cells

    No full text
    You may view, copy and print the material available on this Platform for your non-commercial or personal use only. All copies that you make must retain all copyrights and other notices that are on the version on this Platform. Except as provided in the previous sentence, you may not use, distribute, modify, transmit, revise, reverse engineer, republish, post or create derivative works of the content of this Platform without ECTRIMS's prior written permission
    corecore