15 research outputs found

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    HematoWork: A Knowledge-Based Workflow System for Distributed Cancer Therapy

    No full text
    The domain of hemato-oncology is characterized by a complex and data-intensive treatment and the involvement of geographically distributed institutions (e.g. oncological ward, central commission, external panels) in the context of protocol-directed trials. Current research efforts in this domain (e.g. [1-3]) focus on specialized subtasks such as chemotherapy calculation and toxicity monitoring, but fail to support inter-application data flow and coordination aspects which have been identified as essential for integration in heterogeneous and distributed clinical environments (e.g. [4,5]). Therefore, at Leipzig University, the distributed workflow system HEMATOWORK, which has explicit knowledge about the oncological treatment and the associated communication paths between the involved institutions, is currently developed. In particular, HEMATOWORK intends to support the following basic tasks: Treatment Functionality: This core functionality of HEMATOWORK covers therapy management and diagnostic monitoring, and is achieved through specialized applications (e.g. for calculating chemotherapy dosages) and databases coordinated by HEMATOWORK. Intra-hospital Communication Functionality: As every specialized medical workflow system inherently requires services of other local sections and departments

    Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients

    No full text
    Background: The combination of intermediate-dose cytarabine plus mitoxantrone (IMA) can induce high complete remission rates with acceptable toxicity in elderly patients with acute myeloid leukemia (AML). We present the final results of a randomized-controlled trial comparing IMA with the standard 7+3 induction regimen consisting of continuous infusion cytarabine plus daunorubicin (DA). Patients and methods: Patients with newly diagnosed AML>60 years were randomized to receive either intermediate-dose cytarabine (1000 mg/m(2) twice daily on days 1, 3, 5, 7) plus mitoxantrone (10 mg/m(2) days 1-3) (IMA) or standard induction therapy with cytarabine (100 mg/m(2) continuously days 1-7) plus daunorubicin (45 mg/m(2) days 3-5) (DA). Patients in complete remission after DA received intermediate-dose cytarabine plus amsacrine as consolidation treatment, whereas patients after IMA were consolidated with standard-dose cytarabine plus mitoxantrone. Results: Between February 2005 and October 2009, 485 patients were randomized; 241 for treatment arm DA and 244 for IMA; 76% of patients were >65 years. The complete response rate after DA was 39% [95% confidence interval (95% CI): 33-45] versus 55% (95% CI: 49-61) after IMA (odds ratio 1.89, P = 0.001). The 6-week early-death rate was 14% in both arms. Relapse-free survival curves were superimposable in the first year, but separated afterwards, resulting in 3-year relapse-free survival rates of 29% versus 14% in the DA versus IMA arms, respectively (P = 0.042). The median overall survival was 10 months in both arms (P = 0.513). Conclusion: The dose escalation of cytarabine in induction therapy lead to improved remission rates in the elderly AML patients. This did not translate into a survival advantage, most likely due to differences in consolidation treatment. Thus, effective consolidation strategies need to be further explored. In combination with an effective consolidation strategy, the use of intermediate-dose cytarabine in induction may improve curative treatment for elderly AML patients
    corecore