30 research outputs found

    Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability.</p> <p>Methods</p> <p>Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M<sub>max </sub>and F-waves were elicited at different times before or after the vibratory stimulation.</p> <p>Results</p> <p>The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves.</p> <p>Conclusions</p> <p>These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.</p

    Characterization of the Conus bullatus genome and its venom-duct transcriptome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The venomous marine gastropods, cone snails (genus <it>Conus</it>), inject prey with a lethal cocktail of conopeptides, small cysteine-rich peptides, each with a high affinity for its molecular target, generally an ion channel, receptor or transporter. Over the last decade, conopeptides have proven indispensable reagents for the study of vertebrate neurotransmission. <it>Conus bullatus </it>belongs to a clade of <it>Conus </it>species called <it>Textilia</it>, whose pharmacology is still poorly characterized. Thus the genomics analyses presented here provide the first step toward a better understanding the enigmatic <it>Textilia </it>clade.</p> <p>Results</p> <p>We have carried out a sequencing survey of the <it>Conus bullatus </it>genome and venom-duct transcriptome. We find that conopeptides are highly expressed within the venom-duct, and describe an <it>in silico </it>pipeline for their discovery and characterization using RNA-seq data. We have also carried out low-coverage shotgun sequencing of the genome, and have used these data to determine its size, genome-wide base composition, simple repeat, and mobile element densities.</p> <p>Conclusions</p> <p>Our results provide the first global view of venom-duct transcription in any cone snail. A notable feature of <it>Conus bullatus </it>venoms is the breadth of A-superfamily peptides expressed in the venom duct, which are unprecedented in their structural diversity. We also find SNP rates within conopeptides are higher compared to the remainder of <it>C. bullatus </it>transcriptome, consistent with the hypothesis that conopeptides are under diversifying selection.</p

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Three-dimensional spectral domain optical coherence tomography and light microscopy of an intravitreal parasite.

    No full text
    BACKGROUND: Various imaging modalities play a role in diagnosing parasitic infections of the eye. We describe the spectral domain optical coherence tomography (SD-OCT) findings of an intravitreal parasite with subsequent evaluation by light microscopy. FINDINGS: This is a case report of a 37-year-old Ecuadorian man who presented with uveitic glaucoma and a new floater in his left eye for 1 week's duration. Full ophthalmic examination revealed an intravitreal parasite. Color fundus photography, fluorescein angiography (FA), ocular ultrasonography (US), and SD-OCT were performed. The parasite was removed via 23-gauge pars plana vitrectomy and sent to pathology for evaluation. Color fundus photography and ocular ultrasonography demonstrated an elongated foreign body within the vitreous above the retina. FA demonstrated minimal vascular changes in the vicinity of the parasite. SD-OCT was utilized to visualize the parasite and to create a three-dimensional (3D) image. The parasite was determined to be most consistent with Gnathostoma spp. by morphologic analysis. CONCLUSIONS: This is the first reported case of SD-OCT of an intravitreal parasite with corresponding evaluation by pathology. SD-OCT allows non-invasive, high-resolution visualization and 3D reconstruction of parasitic anatomy which may help establish tomographic criteria for species identification
    corecore