70 research outputs found

    Cerebrospinal Fluid Cytokines in Multiple System Atrophy: a Cross-Sectional Catalan MSA Registry Study

    Get PDF
    Introduction: Neuroinflammation is a potential player in neurodegenerative conditions, particularly the aggressive ones, such as multiple system atrophy (MSA). Previous reports on cytokine levels in MSA using serum or cerebrospinal fluid (CSF) have been inconsistent, including small samples and a limited number of cytokines, often without comparison to Parkinson's disease (PD), a main MSA differential diagnosis. Methods: Cross-sectional study of CSF levels of 38 cytokines using a multiplex assay in 73 participants: 39 MSA patients (19 with parkinsonian type [MSAp], 20 with cerebellar type [MSAc]; 31 probable, 8 possible), 19 PD patients and 15 neurologically unimpaired controls. None of the participants was under non-steroidal anti-inflammatory drugs at the time of the lumbar puncture. Results: There were not significant differences in sex and age among participants. In global non-parametric comparisons FDR-corrected for multiple comparisons, CSF levels of 5 cytokines (FGF-2, IL-10, MCP-3, IL-12p40, MDC) differed among the three groups. In pair-wise FDR-corrected non-parametric comparisons 12 cytokines (FGF-2, eotaxin, fractalkine, IFN-α2, IL-10, MCP-3, IL-12p40, MDC, IL-17, IL-7, MIP-1β, TNF-α) were significantly higher in MSA vs. non-MSA cases (PD + controls pooled together). Of these, MCP-3 and MDC were the most significant ones, also differed in MSA vs. PD, and were significant MSA-predictors in binary logistic regression models and ROC curves adjusted for age. CSF levels of fractalkine and MIP-1α showed a strong and significant positive correlation with UMSARS-2 scores. Conclusion: Increased CSF levels of cytokines such as MCP-3, MDC, fractalkine and MIP-1α deserve consideration as potential diagnostic or severity biomarkers of MSA.info:eu-repo/semantics/publishedVersio

    Myeloid C/EBPβ deficiency reshapes microglial gene expression and is protective in experimental autoimmune encephalomyelitis

    Get PDF
    Background CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPβ show protection against excitotoxic and ischemic CNS damage, but the involvement in this neuroprotective effect of the various C/EBPβ-expressing cell types is not solved. Since C/EBPβ-deficient microglia show attenuated neurotoxicity in culture, we hypothesized that specific C/EBPβ deficiency in microglia could be neuroprotective in vivo. In this study, we have tested this hypothesis by generating mice with myeloid C/EBPβ deficiency. Methods Mice with myeloid C/EBPβ deficiency were generated by crossing LysMCre and C/EBPβfl/fl mice. Primary microglial cultures from C/EBPβfl/fl and LysMCre-C/EBPβfl/fl mice were treated with lipopolysaccharide ± interferon γ (IFNγ) for 6 h, and gene expression was analyzed by RNA sequencing. Gene expression and C/EBPβ deletion were analyzed in vivo in microglia isolated from the brains of C/EBPβfl/fl and LysMCre-C/EBPβfl/fl mice treated systemically with lipolysaccharide or vehicle. Mice of LysMCre-C/EBPβfl/fl or control genotypes were subjected to experimental autoimmune encephalitis and analyzed for clinical signs for 52 days. One- or two-way ANOVA or Kruskal-Wallis with their appropriate post hoc tests were used. Results LysMCre-C/EBPβfl/fl mice showed an efficiency of C/EBPβ deletion in microglia of 100 and 90% in vitro and in vivo, respectively. These mice were devoid of female infertility, perinatal mortality and reduced lifespan that are associated to full C/EBPβ deficiency. Transcriptomic analysis of C/EBPβ-deficient primary microglia revealed C/EBPβ-dependent expression of 1068 genes, significantly enriched in inflammatory and innate immune responses GO terms. In vivo, microglial expression of the pro-inflammatory genes Cybb, Ptges, Il23a, Tnf and Csf3 induced by systemic lipopolysaccharide injection was also blunted by C/EBPβ deletion. CNS expression of C/EBPβ was upregulated in experimental autoimmune encephalitis and in multiple sclerosis samples. Finally, LysMCre-C/EBPβfl/fl mice showed robust attenuation of clinical signs in experimental autoimmune encephalitis. Conclusion This study provides new data that support a central role for C/EBPβ in the biology of activated microglia, and it offers proof of concept for the therapeutic potential of microglial C/EBPβ inhibition in multiple sclerosis

    Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ

    Get PDF
    [Background] The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells.[Methods] Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3.[Results] In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo.[Conclusions] Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3.This work was supported by MINECO, Grant SAF2014-52940-R and partially financed with FEDER funds. CIBERNED is funded by the Instituto de Salud Carlos III. JAM-G was supported by CIBERNED. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    A Mouse Model of Post-Arthroplasty Staphylococcus aureus Joint Infection to Evaluate In Vivo the Efficacy of Antimicrobial Implant Coatings

    Get PDF
    Post-arthroplasty infections represent a devastating complication of total joint replacement surgery, resulting in multiple reoperations, prolonged antibiotic use, extended disability and worse clinical outcomes. As the number of arthroplasties in the U.S. will exceed 3.8 million surgeries per year by 2030, the number of post-arthroplasty infections is projected to increase to over 266,000 infections annually. The treatment of these infections will exhaust healthcare resources and dramatically increase medical costs.To evaluate novel preventative therapeutic strategies against post-arthroplasty infections, a mouse model was developed in which a bioluminescent Staphylococcus aureus strain was inoculated into a knee joint containing an orthopaedic implant and advanced in vivo imaging was used to measure the bacterial burden in real-time. Mice inoculated with 5x10(3) and 5x10(4) CFUs developed increased bacterial counts with marked swelling of the affected leg, consistent with an acute joint infection. In contrast, mice inoculated with 5x10(2) CFUs developed a low-grade infection, resembling a more chronic infection. Ex vivo bacterial counts highly correlated with in vivo bioluminescence signals and EGFP-neutrophil fluorescence of LysEGFP mice was used to measure the infection-induced inflammation. Furthermore, biofilm formation on the implants was visualized at 7 and 14 postoperative days by variable-pressure scanning electron microscopy (VP-SEM). Using this model, a minocycline/rifampin-impregnated bioresorbable polymer implant coating was effective in reducing the infection, decreasing inflammation and preventing biofilm formation.Taken together, this mouse model may represent an alternative pre-clinical screening tool to evaluate novel in vivo therapeutic strategies before studies in larger animals and in human subjects. Furthermore, the antibiotic-polymer implant coating evaluated in this study was clinically effective, suggesting the potential for this strategy as a therapeutic intervention to combat post-arthroplasty infections

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Gene expression profiling of LPS- and LPS+IFN-activated primary murine microglia by RNAseq

    No full text
    Trabajo presentado en el IX Simposi de Neurobiologia Experimental, celebrado en Barcelona, España, el 22 y 23 de octubre de 2014Peer Reviewe
    corecore