723 research outputs found
The rare top quark decays in the topcolor-assisted technicolor model
We consider the rare top quark decays in the framework of topcolor-assisted
technicolor (TC2) model. We find that the contributions of top-pions and
top-Higgs predicted by the TC2 model can enhance the SM branching ratios by as
much as 6-9 orders of magnitude. i.e., in the most case, the orders of
magnitude of branching ratios are , , . With the reasonable values of the
parameters in TC2 model, such rare top quark decays may be testable in the
future experiments. So, rare top quark decays provide us a unique way to test
TC2 model.Comment: 14 pages, 4 figure
A functorial construction of moduli of sheaves
We show how natural functors from the category of coherent sheaves on a
projective scheme to categories of Kronecker modules can be used to construct
moduli spaces of semistable sheaves. This construction simplifies or clarifies
technical aspects of existing constructions and yields new simpler definitions
of theta functions, about which more complete results can be proved.Comment: 52 pp. Dedicated to the memory of Joseph Le Potier. To appear in
Inventiones Mathematicae. Slight change in the definition of the Kronecker
algebra in Secs 1 (p3) and 2.2 (p6), with corresponding small alterations
elsewhere, to make the constructions work for non-reduced schemes. Section
6.5 rewritten. Remark 2.6 and new references adde
Lepton flavor violation decays in the topcolor-assisted technicolor model and the littlest Higgs model with parity
The new particles predicted by the topcolor-assisted technicolor ()
model and the littlest Higgs model with T-parity (called model) can
induce the lepton flavor violation () couplings at tree level or one loop
level, which might generate large contributions to some processes. Taking
into account the constraints of the experimental data on the relevant free
parameters, we calculate the branching ratios of the decay processes
with = , and
in the context of these two kinds of new physics models. We find
that the model and the model can indeed produce significant
contributions to some of these decay processes.Comment: 24 pages, 7 figure
Analytic properties of the Landau gauge gluon and quark propagators
We explore the analytic structure of the gluon and quark propagators of
Landau gauge QCD from numerical solutions of the coupled system of renormalized
Dyson--Schwinger equations and from fits to lattice data. We find sizable
negative norm contributions in the transverse gluon propagator indicating the
absence of the transverse gluon from the physical spectrum. A simple analytic
structure for the gluon propagator is proposed. For the quark propagator we
find evidence for a mass-like singularity on the real timelike momentum axis,
with a mass of 350 to 500 MeV. Within the employed Green's functions approach
we identify a crucial term in the quark-gluon vertex that leads to a positive
definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev
Probing Topcolor-Assisted Technicolor from Top-Charm Associated Production at LHC
We propose to probe the topcolor-assisted technicolor (TC2) model from the
top-charm associated productions at the LHC, which are highly suppressed in the
Standard Model. Due to the flavor-changing couplings of the top quark with the
scalars (top-pions and top-Higgs) in TC2 model, the top-charm associated
productions can occur via both the s-channel and t-channel parton processes by
exchanging a scalar field at the LHC. We examined these processes through Monte
Carlo simulation and found that they can reach the observable level at the LHC
in quite a large part of the parameter space of the TC2 model.Comment: Version to appear in PRD (Rapid Communication
Chromomagnetic Dipole Moment of the Top Quark Revisited
We study the complete one-loop contributions to the chromagnetic dipole
moment of the top quark in the Standard Model, two Higgs doublet
models, topcolor assited technicolor models (TC2), 331 models and extended
models with a single extra dimension. We find that the SM predicts
and that the predictions of the other models are also
consitent with the constraints imposed on by low-energy
precision measurements.Comment: 20 pages, 5 figures, Updat
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Exfoliated Nanocomposites Based on Polyaniline and Tungsten Disulfide
Nanocomposite materials consisting of polyaniline (PANI) and exfoliated WS2 were synthesized. The WS2 was prepared by reacting tungstic acid with thiourea at 500°C under nitrogen flow. Samples were prepared with a WS2 content of 1, 5, 7.5, 10, 12.5, 15, 20, 37, and 64% by mass. An improvement in the electronic conductivity value of the PANI was observed through the incorporation of exfoliated WS2. The electronic conductivity of PANI-15%WS2 was 24.5 S/cm, an eightfold increase when compared to pure PANI. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) provided evidence that the nanocomposites are in an exfoliated state. XRD and TEM showed that the nanocomposites were completely amorphous, suggesting lack of structural order in these materials, while their EPR signals were considerably narrower compared to pure PANI, indicating the formation of genuine exfoliated systems. Furthermore, our research showed that WS2 can be used as a filler to improve activation energy of decomposition of the polymer. By using the Ozawa method, we studied the decomposition kinetics for the nanocomposites, as well as for the pure polymer. The activation energy for the decomposition of pure PANI was found to be 131.2 kJ/mol. Increasing the amount of WS2 to 12.5% in the PANI increases the activation energy of decomposition to 165.4 kJ/mol, an enhancement of 34.2 kJ/mol over the pure polymer
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV
Peer reviewe
- …
