43 research outputs found

    Effectiveness of Mechanisms and Models of Coordination between Organizations, Agencies and Bodies Providing or Financing Health Services in Humanitarian Crises: A Systematic Review.

    Get PDF
    BACKGROUND: Effective coordination between organizations, agencies and bodies providing or financing health services in humanitarian crises is required to ensure efficiency of services, avoid duplication, and improve equity. The objective of this review was to assess how, during and after humanitarian crises, different mechanisms and models of coordination between organizations, agencies and bodies providing or financing health services compare in terms of access to health services and health outcomes. METHODS: We registered a protocol for this review in PROSPERO International prospective register of systematic reviews under number PROSPERO2014:CRD42014009267. Eligible studies included randomized and nonrandomized designs, process evaluations and qualitative methods. We electronically searched Medline, PubMed, EMBASE, Cochrane Central Register of Controlled Trials, CINAHL, PsycINFO, and the WHO Global Health Library and websites of relevant organizations. We followed standard systematic review methodology for the selection, data abstraction, and risk of bias assessment. We assessed the quality of evidence using the GRADE approach. RESULTS: Of 14,309 identified citations from databases and organizations' websites, we identified four eligible studies. Two studies used mixed-methods, one used quantitative methods, and one used qualitative methods. The available evidence suggests that information coordination between bodies providing health services in humanitarian crises settings may be effective in improving health systems inputs. There is additional evidence suggesting that management/directive coordination such as the cluster model may improve health system inputs in addition to access to health services. None of the included studies assessed coordination through common representation and framework coordination. The evidence was judged to be of very low quality. CONCLUSION: This systematic review provides evidence of possible effectiveness of information coordination and management/directive coordination between organizations, agencies and bodies providing or financing health services in humanitarian crises. Our findings can inform the research agenda and highlight the need for improving conduct and reporting of research in this field

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore