73 research outputs found

    Maxillofacial injuries associated with intimate partner violence in women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The facial region has been the most common site of injury following violent episodes. The purpose of this study was to determine the prevalence and pattern of maxillofacial injuries associated with intimate partner violence (IPV) in women treated at a single facility in Malaysia.</p> <p>Methods</p> <p>A retrospective review of 242 hospital records of female IPV victims who were seen at the One-Stop Crisis Centre (OSCC) in Hospital Raja Perempuan Zainab II, Kelantan over a two-year period (January 1, 2005 to December 31, 2006) was performed. A structured form was used for data collection. Information regarding the anatomical sites of injuries, types of injuries, and mechanisms of assault were obtained.</p> <p>Results</p> <p>Most victims were married (85.1%), were injured by the husband (83.5%), and had at least one previous IPV episode (85.5%). Injury to the maxillofacial region was the most common (50.4%), followed by injury to the limbs (47.9%). In 122 cases of maxillofacial injuries, the middle of the face was most frequently affected (60.6%), either alone or in combination with the upper or lower third of the face. Injury to soft tissues (contusions, abrasions and lacerations) was the most common (87.7%).</p> <p>Conclusions</p> <p>This study indicates there is a high prevalence of maxillofacial injuries associated with IPV among women treated at the OSCC in Kelantan, Malaysia.</p

    Silver diagnosis in neuropathology: principles, practice and revised interpretation

    Get PDF
    Silver-staining methods are helpful for histological identification of pathological deposits. In spite of some ambiguities regarding their mechanism and interpretation, they are widely used for histopathological diagnosis. In this review, four major silver-staining methods, modified Bielschowsky, Bodian, Gallyas (GAL) and Campbell–Switzer (CS) methods, are outlined with respect to their principles, basic protocols and interpretations, thereby providing neuropathologists, technicians and neuroscientists with a common basis for comparing findings and identifying the issues that still need to be clarified. Some consider “argyrophilia” to be a homogeneous phenomenon irrespective of the lesion and the method. Thus, they seek to explain the differences among the methods by pointing to their different sensitivities in detecting lesions (quantitative difference). Comparative studies, however, have demonstrated that argyrophilia is heterogeneous and dependent not only on the method but also on the lesion (qualitative difference). Each staining method has its own lesion-dependent specificity and, within this specificity, its own sensitivity. This “method- and lesion-dependent” nature of argyrophilia enables operational sorting of disease-specific lesions based on their silver-staining profiles, which may potentially represent some disease-specific aspects. Furthermore, comparisons between immunohistochemical and biochemical data have revealed an empirical correlation between GAL+/CS-deposits and 4-repeat (4R) tau (corticobasal degeneration, progressive supranuclear palsy and argyrophilic grains) and its complementary reversal between GAL-/CS+deposits and 3-repeat (3R) tau (Pick bodies). Deposits containing both 3R and 4R tau (neurofibrillary tangles of Alzheimer type) are GAL+/CS+. Although no molecular explanations, other than these empiric correlations, are currently available, these distinctive features, especially when combined with immunohistochemistry, are useful because silver-staining methods and immunoreactions are complementary to each other

    Contribution of Exogenous Genetic Elements to the Group A Streptococcus Metagenome

    Get PDF
    Variation in gene content among strains of a bacterial species contributes to biomedically relevant differences in phenotypes such as virulence and antimicrobial resistance. Group A Streptococcus (GAS) causes a diverse array of human infections and sequelae, and exhibits a complex pathogenic behavior. To enhance our understanding of genotype-phenotype relationships in this important pathogen, we determined the complete genome sequences of four GAS strains expressing M protein serotypes (M2, M4, and 2 M12) that commonly cause noninvasive and invasive infections. These sequences were compared with eight previously determined GAS genomes and regions of variably present gene content were assessed. Consistent with the previously determined genomes, each of the new genomes is ∼1.9 Mb in size, with ∼10% of the gene content of each encoded on variably present exogenous genetic elements. Like the other GAS genomes, these four genomes are polylysogenic and prophage encode the majority of the variably present gene content of each. In contrast to most of the previously determined genomes, multiple exogenous integrated conjugative elements (ICEs) with characteristics of conjugative transposons and plasmids are present in these new genomes. Cumulatively, 242 new GAS metagenome genes were identified that were not present in the previously sequenced genomes. Importantly, ICEs accounted for 41% of the new GAS metagenome gene content identified in these four genomes. Two large ICEs, designated 2096-RD.2 (63 kb) and 10750-RD.2 (49 kb), have multiple genes encoding resistance to antimicrobial agents, including tetracycline and erythromycin, respectively. Also resident on these ICEs are three genes encoding inferred extracellular proteins of unknown function, including a predicted cell surface protein that is only present in the genome of the serotype M12 strain cultured from a patient with acute poststreptococcal glomerulonephritis. The data provide new information about the GAS metagenome and will assist studies of pathogenesis, antimicrobial resistance, and population genomics

    Pleiotropic Effects of Deubiquitinating Enzyme Ubp5 on Growth and Pathogenesis of Cryptococcus neoformans

    Get PDF
    Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore