1,219 research outputs found

    Symmetric vs asymmetric protection levels in SDC methods for tabular data

    Get PDF
    The final publication is available at link.springer.comProtection levels on sensitive cells—which are key parameters of any statistical disclosure control method for tabular data—are related to the difficulty of any attacker to recompute a good estimation of the true cell values. Those protection levels are two numbers (one for the lower protection, the other for the upper protection) imposing a safety interval around the cell value, that is, no attacker should be able to recompute an estimate within such safety interval. In the symmetric case the lower and upper protection levels are equal; otherwise they are referred as asymmetric protection levels. In this work we empirically study the effect of symmetry in protection levels for three protection methods: cell suppression problem (CSP), controlled tabular adjustment (CTA), and interval protection (IP). Since CSP and CTA are mixed integer linear optimization problems, it is seen that the symmetry (or not) of protection levels affect to the CPU time needed to compute a solution. For IP, a linear optimization problem, it is observed that the symmetry heavily affects to the quality of the solution provided rather than to the solution time.Peer ReviewedPostprint (author's final draft

    Observation of Van Hove singularities in twisted graphene layers

    Full text link
    Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is difficult to control. In the case of single-layer graphene, the singularity is too far from the Fermi energy and hence difficult to reach with standard doping and gating techniques. Here we report the observation of low-energy Van Hove singularities in twisted graphene layers seen as two pronounced peaks in the density of states measured by scanning tunneling spectroscopy. We demonstrate that a rotation between stacked graphene layers can generate Van Hove singularities, which can be brought arbitrarily close to the Fermi energy by varying the angle of rotation. This opens intriguing prospects for Van Hove singularity engineering of electronic phases.Comment: 21 pages 5 figure

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Chemicals released by male sea cucumber mediate aggregation and spawning behaviours

    Get PDF
    The importance of chemical communication in reproduction has been demonstrated in many marine broadcast spawners. However, little is known about the use of chemical communication by echinoderms, the nature of the compounds involved and their mechanism(s) of action. Here, the hypothesis that the sea cucumber Holothuria arguinensis uses chemical communication for aggregation and spawning was tested. Water conditioned by males, but not females, attracted both males and females; gonad homogenates and coelomic fluid had no effect on attraction. Male spawning water, but not female spawning water, stimulated males and females to release their gametes; the spermatozoa alone did not induce spawning. H. arguinensis male spawning water also induced spawning in the phylogenetically related H. mammata. This indicates that males release pheromones together with their gametes that induce spawning in conspecifics and possibly sympatric species. Finally, the male pheromone seems to be a mixture with at least one labile compound (biological activity is lost after four hours at ambient temperature) possibly including phosphatidylcholines. The identification of pheromones in sea cucumbers offers a new ecological perspective and may have practical applications for their aquaculture.FCT - Foundation for Science and Technology [UID/Multi/04326/2013, SFRH/BD/90761/2012]info:eu-repo/semantics/publishedVersio

    Measurement of the charge asymmetry in dileptonic Decays of top quark pairs in pp collisions at √ s = 7 TeV using the ATLAS detector

    Get PDF
    A measurement of the top-antitop (tt) charge asymmetry is presented using data corresponding to an integrated luminosity of 4.6 fb −1 of LHC pp collisions at a centre- of-mass energy of 7 TeV collected by the ATLAS detector. Events with two charged leptons, at least two jets and large missing transverse momentum are selected. Two observables are studied: A tt/C, based on the reconstructed tt final state. The asymmetries are measured to be A ll/C = 0.024 +/- 0.015 (stat.) +/- 0.009 (syst.) Att/C = 0.021 +/- 0.025 (stat.) +/- 0.017 (syst.) The measured values are in agreement with the Standard Model predictions
    corecore