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Abstract. Protection levels on sensitive cells—which are key parame-
ters of any statistical disclosure control method for tabular data—are
related to the difficulty of any attacker to recompute a good estimation
of the true cell values. Those protection levels are two numbers (one
for the lower protection, the other for the upper protection) imposing a
safety interval around the cell value, that is, no attacker should be able
to recompute an estimate within such safety interval. In the symmet-
ric case the lower and upper protection levels are equal; otherwise they
are referred as asymmetric protection levels. In this work we empirically
study the effect of symmetry in protection levels for three protection
methods: cell suppression problem (CSP), controlled tabular adjustment
(CTA), and interval protection (IP). Since CSP and CTA are mixed in-
teger linear optimization problems, it is seen that the symmetry (or not)
of protection levels affect to the CPU time needed to compute a solution.
For IP, a linear optimization problem, it is observed that the symmetry
heavily affects to the quality of the solution provided rather than to the
solution time.
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1 Introduction

The three statistical disclosure control methods for tabular data consid-
ered in this work (namely: cell suppression problem (CSP)[10,5], controlled
tabular adjustment (CTA)[4,13,2], and interval protection (IP)[8,11]) be-
long to the family of post-tabular data protection methods, which mod-
ify or suppress table cells once the table have been built (in contrast
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to pre-tabular methods, which change microdata files, and therefore, al-
though being faster, may not guarantee table additivity if the true values
of marginal or total cells want to be preserved). More details can be found
in the monograph [14] and the survey [6].

Each method protects sensitive cells in a different way. CSP removes
sensitive cells; other additional cells have also to be removed to avoid
recomputing the original value of sensitive cells. CSP results in a large
and difficult mixed integer linear problem, which can be solved optimally
(using Benders decomposition as done in [10]) or heuristically (e.g., using
shortest paths for some hierarchical tables as in [5]). IP (or partial cell
suppression, which was its original name coined in [11]) can be seen as
a linear version of CSP, where cell values are replaced by intervals con-
taining the true value. IP, unlike CSP, is a linear optimization problem,
and therefore—at least theoretically—it can be solved in polynomial time
by efficient interior-point methods [17]. CTA replaces sensitive values by
safe values (i.e., outside the safety interval), thus forcing changes in other
cells to preserve the table additivity. CTA is also formulated as a mixed
integer linear optimization problem, which can be solved optimally by
general purpose solvers [9], or heuristically [13,2]. This work provides a
formulation of CSP, CTA and IP from the same set of parameters.

One of the key parameters for the optimization models for CSP, CTA
and IP are the lower and upper protection levels: these two numbers define
a protection interval around the cell value, such that no attacker should be
able to obtain an estimation of the true value within such interval. When
the lower and upper protection levels are equal, we have a symmetric
interval around the true value; otherwise we refer to the asymmetric case.
A priori, asymmetric intervals could benefit the solution of mixed integer
linear optimization problems, such as CTA and CSP. Indeed, some results
along these lines were obtained in [9] for CTA with quadratic objectives.
Another objective of this work is to check if such behaviour is observed
for CTA and CSP in the solution of a set of hierarchical tables.

For IP, being a linear optimization model, such symmetry is not ex-
pected to provide faster executions. However, as it will be shown in the
computational results, the use of asymmetric protection levels is instru-
mental to avoid the disclosure of the true cell values.

This short paper is organized as follows. Section 2 shows a formulation
of CSP, CTA and IP using a unified set of parameters. Section 3 reports
and compares the results obtained on a set of generated hierarchical in-
stances, using symmetric and asymmetric protection levels, for the three
tabular data protection methods.
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2 Formulation of CSP, CTA and IP for tabular data

The parameters that define any CSP, CTA or IP instance are:

– A general table, consisting of a set of n cells and a set of m linear
relations Aa = b, where A ∈ Rm×n is the matrix defining the table
structure, a = (a1, . . . , an)

> ∈ Rn is the vector of cell values, and the
right-hand side b ∈ Rm is usually 0 if the table is additive.

– Upper and lower bounds u ∈ Rn and l ∈ Rn for the cell values, which
are assumed to be known by any attacker: l ≤ a ≤ u (e.g., l = 0,
u = +∞ for a positive table).

– Vector of nonnegative weights w ∈ Rn, associated to either the cell
suppressions for CSP, the cell perturbations for CTA, or the width of
interval replacing cells for IP. That is, wi, i = 1, . . . , n measures the
cost (or data utility loss) associated to hiding the true value of cell
i. If wi = 1 for all i = 1, . . . , n, the same cost is given to any cell; if
wi = 1/ai a relative cost is considered depending on the cell values;
other options are possible, such as, for instance, wi = 1/

√
ai.

– Set S ⊆ {1, . . . , n} of sensitive cells, decided in advance by applying
some sensitivity rules.

– Lower and upper protection levels for each sensitive cell lpls and upls
s ∈ S (usually either a fraction of as or directly obtained from the
sensitivity rules). No sliding protection is considered, unlike in [10].

2.1 Formulation of cell suppression problem (CSP)

CSP aims at finding a set C of complementary cells to be removed such
that for all s ∈ S

as ≤ as − lpls and as ≥ as + upls, (1)

as and as being defined as

as = min
x

xs

s. to Ax = b
li ≤ xi ≤ ui i ∈ S ∪ C
xi = ai i 6∈ S ∪ C

and

as = max
x

xs

s. to Ax = b
li ≤ xi ≤ ui i ∈ S ∪ C
xi = ai i 6∈ S ∪ C.

(2)
The classical model for CSP, originally formulated in [15], considers two
sets of variables: (1) yi ∈ {0, 1}, i = 1, . . . , n, is 1 if cell i has to be
suppressed, and 0 otherwise; (2) two auxiliary vectors xl,s ∈ Rn and xu,s ∈
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Rn, for all s ∈ S, to impose as constraints that the solutions to problems
(2) would satisfy (1). The resulting model is

min
y,xl,s,xu,s

n∑
i=1

wiyi

s. to Axl,s = 0

(li − ai)yi ≤ xl,si ≤ (ui − ai)yi i = 1, . . . , n

xl,ss ≤ −lpls

Axu,s = 0
(li − ai)yi ≤ xu,si ≤ (ui − ai)yi i = 1, . . . , n

xu,ss ≥ upls


∀ s ∈ S

yi ∈ {0, 1} i = 1, . . . , n.
(3)

When yi = 1, the inequality constraints of (3) with both right- and left-
hand sides impose bounds on the deviations xl,pi and xu,pi for cell i; these
deviations are prevented when yi = 0, that is, when the cell is published
(non-suppressed). Formulation (3) gives rise to a mixed integer linear op-
timization problem of n binary variables, 2n|S| continuous variables, and
2(m+ 2n+ 1)|S| constraints.

2.2 Formulation of controlled tabular adjustment (CTA)

Instead of suppressing cells, CTA computes an alternative safe table x:
the closest to a using some particular distance `(w) based on cell weights
w. In this context safe means that the values of sensitive cells are outside
the protection interval [as− lpls, as+upls] for all s ∈ S. The optimization
problem to be solved is:

min
x
||x− a||`(w)

s. to Ax = b
l ≤ x ≤ u
xs ≤ as − lpls or xs ≥ as + upls s ∈ S.

(4)

Defining cell deviations z = x− a, lz = l − a and uz = u− a, (4) can be
reformulated as:

min
z
||z||`(w)

s. to Az = 0
lz ≤ z ≤ uz
zs ≤ −lpls or zs ≥ upls s ∈ S.

(5)
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The “or” constraints of (5) can be modeled using binary variables ys ∈
{0, 1}, s ∈ S, such that ys = 1 if cell s is “upper protected” (i.e, zs ≥ upls),
and ys = 0 if it is “lower protected” (zs ≤ −lpls). For distance `1, the
resulting mixed integer linear optimization formulation is

min
z+,z−

n∑
i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
0 ≤ z+i ≤ uzi i 6∈ S
0 ≤ z−i ≤ −lzi i 6∈ S
upliyi ≤ z+i ≤ uziyi i ∈ S
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi) i ∈ S
yi ∈ {0, 1} i ∈ S.

(6)

where zi, i = 1, . . . , n, is split as zi = z+i − z−i , such that |zi| = z+i + z−i .
Problem (6) has |S| binary variables, 2n continuous variables and m+4|S|
constraints.

2.3 Formulation of interval protection (IP)

The purpose of IP is to replace cell values ai by feasible intervals [lbi, ubi],
i = 1, . . . , n—where feasible means that li ≤ lbi and ubi ≤ ui, such that
estimates of as, s ∈ S, computed by any attacker should be outside the
protection interval [as− lpls, as + upls]. This means—similarly to what is
was done for CSP—that

as ≤ as − lpls and as ≥ as + upls, (7)

as and as being defined as

as = min
x

xs

s.to Ax = b
lbi ≤ xi ≤ ubi i = 1, . . . , n

and

as = max
x

xs

s.to Ax = b
lbi ≤ xi ≤ ubi i = 1, . . . , n.

(8)

Like in CSP, the previous problem can be formulated as a large-scale
(linear in that case, instead of mixed integer linear) optimization problem.
For each sensitive cell s ∈ S, two auxiliary vectors xl,s ∈ Rn and xu,s ∈ Rn

are introduced to impose, respectively, the lower and upper protection
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requirement of (7). The resulting optimization problem is:

min
lb,ub

n∑
i=1

wi(ubi − lbi)

s.to

Axl,s = b

lbi ≤ xl,si ≤ ubi i = 1, . . . , n

xl,ss ≤ as − lpls

Axu,s = b
lbi ≤ xu,si ≤ ubi i = 1, . . . , n

xu,ss ≥ as + upls


∀ s ∈ S

li ≤ lbi ≤ ai i = 1, . . . , n
ai ≤ ubi ≤ ui i = 1, . . . , n.

(9)

Problem (9) is very large, with 2n(|S| + 1) continuous variables and
2(m+ 2n+ 1)|S| constraints. On the other hand, unlike CSP, it is linear
(no binary, no integer variables), and thus theoretically it can be efficiently
solved in polynomial time by general or by specialized interior-point algo-
rithms. As far as we know, no efficient implementation has been developed
yet for IP, and there are only some preliminary prototypes [8]. Some re-
lated heuristics for variations of this problem were considered in [16].

3 Computational experience

To study the effect of symmetric and asymmetric protection levels for
CSP, CTA and IP we generated a set of six hierarchical tables using the
generator introduced in [5]. Two versions of each table were considered:
one with symmetric protection levels, the other with asymmetric ones. In
the symmetric case a 20% of the cell value was considered, while a 5% and
20% were used for respectively the lower and upper protection levels for
asymmetric instances. A priori bounds l and u were 0 and a large value,
respectively (so they were always inactive). Table 1 reports the number of
cells, sensitive cells, table linear relations, and number of nonzero entries
of matrix A, for each instance. For CSP and CTA we used the efficient
(C++) implementations described in [1] and [7], respectively. For IP the
prototype code (a Benders decomposition implemented in AMPL [3,12])
of [8] was used.

Solution times for CSP and CTA appear in Table 2. Since the IP pro-
totype is quite inefficient, their times are not reported. The optimality gap
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Table 1. Instances dimensions.

instance n |S| m nnz
1 1444 135 171 2964
2 2544 237 303 5216
3 2108 196 243 4318
4 1444 216 152 2945
5 1488 220 173 3040
6 1411 209 168 2890

(i.e., the relative distance between the upper and lower bound of the op-
timization problem) required in both methods was 0.1%. Two symmetric
tables exceeded the one hour time limit for CSP, so the final gap reached
(in brackets) is notably higher than the required one. From Table 2, CTA
is clearly more efficient for asymmetric than for symmetric instances; this
is consistent with the results of [9], albeit they were for a quadratic ver-
sion of CTA (i.e., using the `2 Euclidean instead of the `1 distance in
the objective function). For CSP the pattern is not so definitive: asym-
metric instances 4, 5 and, specially, 6 were slower than the corresponding
symmetric variants. However, for the two largest instances (2 and 3) the
symmetric cases were clearly outperformed by the asymmetric ones.

Table 2. Computation times, in seconds.

CTA CSP
instance Symm. Asymm. Symm. Asymm.
1 2.03 0.35 39.12 37.11
2 12.23 0.53 3600 (73%) 638.42
3 10.44 0.65 3600 (74%) 513.61
4 4.66 0.84 20.88 73.17
5 5.15 1.20 25.99 88.06
6 5.30 1.14 53.31 693.1

As for IP, not being a mixed integer linear problem, we do not expect
differences in CPU times between symmetric and asymmetric instances
(and, in addition, we would need an efficient IP code to check them, which
is not the case). However we can perform a comparison between the quality
of the intervals obtained for symmetric and asymmetric variants. In this
respect, we first observed that most of the cells were not replaced by an
interval, that is, lbi and ubi were the same value. Table 3 shows the number
and percentage of cells which have been replaced in each instance by an
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interval, that is, one with different endpoints lbi and ubi. About 9.3% of
cells are sensitive in instances 1 to 3, so one out of two interval-replaced
cells is non-sensitive in the symmetric cases. Instances 4 to 6, with higher
proportion of sensitive cells (about 15%), show lower rates of non-sensitive
cells among all the interval-replaced cells. In all the instances, the number
of cells replaced by an interval increases slightly for the asymmetric cases.

Table 3. Count and percentage of cells which have been replaced by an
interval by IP.

Symmetric Asymmetric
instance n. of cells (%) n. of cells (%)
1 263 18.2 309 21.4
2 471 18.5 529 20.8
3 403 19.1 451 21.4
4 334 23.1 387 26.8
5 377 25.3 412 27.7
6 360 25.5 401 28.4

The quality of the protection is given by its difficulty to disclose the
original cell values. In principle, an interval should be safe since any value
inside it has the same chance to be the value sought by the attacker. How-
ever, we (somehow unexpectedly) found that an instance with symmetric
protection levels is far more vulnerable. Table 4 describes the proportion
of cells that have been replaced with an interval whose midpoint is exactly
the original value (represented here by the zero value). The intervals have
been standardized to have a width of 100. The five classes represented are
given by the midpoint position: for instance, −50 means that the interval
is [−100, 0], that is, the rightmost value is equal to the original cell value;
(−50, 0) means that the original cell value is located somewhere strictly
between the midpoint and the right endpoint. The proportion of cells lying
in the midpoint (0) is very large among the symmetric cases, and repre-
sents a real risk of disclosure, since just taking the average of the interval
has many chances to guess the original cell value. On the other hand, the
proportion of such cases in instances with asymmetric protection levels
is negligible. Figure 1 compares a typical instance (number 3), showing
graphically the benefit of dealing with asymmetric protection levels. The
other instances studied exhibited a similar behaviour.
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Fig. 1. Instance number 3, showing standardized intervals in both sym-
metric and asymmetric cases. The cells have been ranked in each case
according to their interval (so the position along the x-axis is usually
different in the two plots).
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Table 4. Percentage distribution of intervals position.

instance −50 (−50, 0) 0 (0, 50) 50

Symm.

1 2.7 5.7 87.1 4.6 0
2 4 6.4 85.4 4 0.2
3 4 9.4 77.9 6 2.7
4 4.2 6.6 80.8 6.6 1.8
5 6.4 7.4 77.5 6.9 1.9
6 4.7 8.1 76.9 8.3 1.7

Asymm.

1 5.8 3.9 2.9 60.8 26.2
2 2.3 4.5 2.3 59.2 31.4
3 3.1 8.9 1.1 59.2 27.7
4 1.6 4.4 2.1 68.7 23
5 3.6 5.8 1 67.7 21.6
6 2 6 3.5 67.3 20.9

4 Conclusions

From the computational results in the solution of a set of six hierarchical
tables, using efficient implementations of CSP and CTA, and a prototype
code for IP, we conclude:

– For the mixed integer linear problems CTA and CSP, symmetry of
protection levels has an impact on the solution time. For CTA this as-
sertion was always true: asymmetric instances were faster than sym-
metric ones. For CSP this fact was not so conclusive: only for the
largest instances tested asymmetry provided faster executions.

– For IP asymmetric protection levels affected the quality of the solution,
rather than solution times. In general, symmetric protection levels pro-
vided very poor intervals, and in most cases their midpoints disclosed
the true cell value. Therefore, the use of asymmetric protection levels
in IP should be highly recommended.

– Protection levels automatically provided by sensitivity rules are al-
ways symmetric: this practice should be reconsidered according to the
results of this work.

A similar analysis to that done for IP could be performed for the
intervals obtained by the auditing phase of the CSP; this is part of the
future work to be done.
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