74 research outputs found

    Recent Application of Bio-Alcohol: Bio-Jet Fuel

    Get PDF
    Recently, the biomass-based energy production has been actively studied as a research and development area for reducing carbon emissions as a solution to global warming caused by the increase of carbon dioxide emissions. Especially, as the energy consumption in the air transportation field increases, the carbon dioxide emissions increase simultaneously. Therefore, the bio-jet fuel production technology is being actively developed to solve this problem. The bio-jet fuel manufacturing process is a process of manufacturing biomass-derived jet fuel that can replace the existing petroleum-based jet fuel. It includes an alcohol-to-jet (ATJ) process using bio-alcohol such as bio-butanol and bio-ethanol, oil-to-jet (OTJ) process using vegetable oil, and an F-T process using syngas obtained from gasification of biomass-based raw materials

    Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method

    Get PDF
    Customized engineered fibers are currently being used extensively in the aerospace and automobile industries due to the ability to "design in" specific engineering characteristics. Understanding the thermal conductivity of these new fibers is critical for thermal management and design optimization. In the current investigation, a steady-state dc thermal bridge method (DCTBM) is developed to measure the thermal conductivity of individual poly(ether ketone) (PEK)/carbon nanotube (CNT) fibers. For non-conductive fibers, a thin platinum layer was deposited on the test articles to serve as the heater and temperature sensor. The effect of the platinum layer on the thermal conductivity is presented and discussed. DCTBM is first validated using gold and platinum wires (25 mu m in diameter) over a temperature ranging from room temperature to 400 K with +/- 11% uncertainty, and then applied to PEK/CNT fibers with diverse CNT loadings. At a 28 wt. % CNT loading, the thermal conductivity of fibers at 390 K is over 27 Wm(-1) K-1, which is comparable to some engineering alloys.open6

    Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: a single tertiary center experience in Korea

    Get PDF
    PurposeThe use of implantable cardioverter defibrillators (ICDs) to prevent sudden cardiac death is increasing in children and adolescents. This study investigated the use of ICDs in children with congenital heart disease.MethodsThis retrospective study was conducted on the clinical characteristics and effectiveness of ICD implantation at the department of pediatrics of a single tertiary center between 2007 and 2011.ResultsFifteen patients underwent ICD implantation. Their mean age at the time of implantation was 14.5±5.4 years (range, 2 to 22 years). The follow-up duration was 28.9±20.4 months. The cause of ICD implantation was cardiac arrest in 7, sustained ventricular tachycardia in 6, and syncope in 2 patients. The underlying disorders were as follows: ionic channelopathy in 6 patients (long QT type 3 in 4, catecholaminergic polymorphic ventricular tachycardia [CPVT] in 1, and J wave syndrome in 1), cardiomyopathy in 5 patients, and postoperative congenital heart disease in 4 patients. ICD coils were implanted in the pericardial space in 2 children (ages 2 and 6 years). Five patients received appropriate ICD shock therapy, and 2 patients received inappropriate shocks due to supraventricular tachycardia. During follow-up, 2 patients required lead dysfunction-related revision. One patient with CPVT suffered from an ICD storm that was resolved using sympathetic denervation surgery.ConclusionThe overall ICD outcome was acceptable in most pediatric patients. Early diagnosis and timely ICD implantation are recommended for preventing sudden death in high-risk children and patients with congenital heart disease

    Evaluation of the Chemical Characteristics and Predictive Model of Water-Soluble Inorganic Ions for Fine Particulate Matter Generated in Pohang

    Get PDF
    Objectives This study aims to contribute to establishing the regional effective management of fine particulate matter by evaluating the chemical characteristics and contribution of fine particulate matter, and the accuracy of predictive model of fine particulate matter through the measurement of water-soluble inorganic ions (WSIIs) and electrical conductivity for fine particulate matter generated in Pohang. Methods PM10 and PM2.5 samples were simultaneously collected using a low volume air sampler from April to November 2022. For sample analysis, cations of Ca2+, Mg2+, K+, NH4+, Na+ and anions of Cl-, NO3-, SO42-, and electrical conductivity were measured after pretreatment by ultrasonic extraction. Results and Discussion The average concentrations of WSIIs for PM10 and PM2.5 in Pohang were 12.1μg/m3 and 8.5μg/m3, respectively, accounting for 35.5% and 50.0% of each fine particulate matter. The sum of NH4+, NO3-, SO42- concentration was found to account for the majority of 71% and 78% of WSIIs in PM10 and PM2.5, respectively. The PM2.5/PM10 ratios for NH4+, K+, and SO42- were 95%, 89%, and 81%, respectively, mostly present in PM2.5. The average ratio of PM2.5/PM10 for NO3- was 54%, but it rose sharply to 79% in November when the temperature was low, indicating an increase in contribution to the generation of PM2.5 in winter. During the sampling period excluding April and July, the ion balance for cations and anions was relatively good at a 1:1 ratio and showed chemical properties of fine particulate matter close to neutral. A regression model was evaluated for the measured electrical conductivity of WSIIs and the concentration of fine particulate matter. The MAE and RMSE values for PM2.5 were 1.8μg/m3 and 2.4μg/m3, respectively, which were lower than PM10 (MAE 7.5 μg/m3, RMSE 10.3μg/m3), indicating high precision and accuracy. Conclusion This study confirmed the origin of fine particulate matter generated in Pohang through WSIIs analysis, and suggested that the measured electrical conductivity of WSIIs could be used as a key parameter for measuring the concentration of fine particulate matter

    The genome of the freshwater monogonont rotifer Brachionus calyciflorus

    Get PDF
    Monogononta is the most speciose class of rotifers, with more than 2,000 species. The monogonont genus Brachionus is widely distributed at a global scale, and a few of its species are commonly used as ecological and evolutionary models to address questions related to aquatic ecology, cryptic speciation, evolutionary ecology, the evolution of sex and ecotoxicology. With the importance of Brachionus species in many areas of research, it is remarkable that the genome has not been characterized. This study aims to address this lacuna by presenting, for the first time, the whole‐genome assembly of the freshwater species Brachionus calyciflorus. The total length of the assembled genome was 129.6 Mb, with 1,041 scaffolds. The N50 value was 786.6 kb, and the GC content was 24%. A total of 16,114 genes were annotated with repeat sequences, accounting for 21% of the assembled genome. This assembled genome may form a basis for future studies addressing key questions on the evolution of monogonont rotifers. It will also provide the necessary molecular resources to mechanistically investigate ecophysiological and ecotoxicological responses. </p

    Clinical Significance of Thrombosis in an Intracardiac Blind Pouch After a Fontan Operation

    Get PDF
    The univentricular heart after the Fontan operation may have a blind pouch formed by the pulmonary stump or rudimentary ventricle according to the anatomy before surgery. Thrombosis in an intracardiac blind pouch of patients with a univentricular heart is a hazardous complication. Because only a few reports have described this complication, the authors evaluated the clinical significance of thrombosis in an intracardiac blind pouch of a univentricular heart. They performed a retrospective review of medical records from August 1986 to December 2007. Four patients were confirmed as having thrombosis in a pulmonary artery stump and one patient as having thrombosis in a rudimentary ventricle shown by cardiac computed tomography (CT). This represents 1.85% (5/271) of patients with ongoing regular follow-up evaluation after the Fontan operation. The median age at diagnosis was 14.2 years. Two of the five patients were taking aspirin and one patient was taking warfarin when they were identified for the development of thrombosis. None of the patients demonstrated thrombosis in the Fontan tract or venous side of the circulation. Brain magnetic resonance imaging (MRI) showed that three patients had cerebral infarction and one patient had suggestive old ischemia. Three patients with thrombus in the pulmonary stump underwent pulmonary artery stump thrombectomy and pulmonary valve obliteration. One patient with thrombus in the rudimentary ventricle underwent ventricular septal defect (VSD) closure with thrombectomy. Thrombus in a blind pouch could cause systemic thromboembolism despite little blood communication. Therefore, surgical modification of the pulmonary stump and VSD closure of the rudimentary ventricle are required to reduce the risk of later thrombus formation. Clinicians should not overlook the possibility of thrombus in a ligated pulmonary artery stump or a rudimentary ventricle after the Fontan operation, which may increase the risk of embolic stroke for patients with single-ventricle physiology

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore