294 research outputs found
Magnetic Field Induced Spin Polarization of AlAs Two-dimensional Electrons
Two-dimensional (2D) electrons in an in-plane magnetic field become fully
spin polarized above a field B_P, which we can determine from the in-plane
magnetoresistance. We perform such measurements in modulation-doped AlAs
electron systems, and find that the field B_P increases approximately linearly
with 2D electron density. These results imply that the product |g*|m*, where g*
is the effective g-factor and m* the effective mass, is a constant essentially
independent of density. While the deduced |g*|m* is enhanced relative to its
band value by a factor of ~ 4, we see no indication of its divergence as 2D
density approaches zero. These observations are at odds with results obtained
in Si-MOSFETs, but qualitatively confirm spin polarization studies of 2D GaAs
carriers.Comment: 4 pages, 5 figure
Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather
The article of record as published may be found at https://doi.org/10.1038/s41558-019-0662-yWe thank R. Blackport, C. Deser, L. Sun, J. Screen and D. Smith for discussions and
suggested revisions to the manuscript. We also thank J. Screen and L. Sun for model data.
A. Amin helped to create Fig. 2. US CLIVAR logistically and financially supported the
Arctic-Midlatitude Working Group and Arctic Change and its Influence on Mid-Latitude
Climate and Weather workshop that resulted in this article. J.C. is supported by the US
National Science Foundation grants AGS-1657748 and PLR-1504361, 1901352. M.W.
acknowledges funding by the Deutsche Forschungsgemeinschaft project no. 268020496–
TRR 172, within the Transregional Collaborative Research Center “Arctic Amplification:
Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3
”.
T.V. was supported by the Academy of Finland grant 317999. J.O. was supported by the
NOAA Arctic Research Program. J.F. was supported by the Woods Hole Research Center.
S.W. and H.G. are supported by the US DOE Award Number DE-SC0016605. J.Y. was
supported by the Korea Meteorological Administration Research and Development
Program under grant KMI2018-01015 and National Research Foundation grant
NRF_2017R1A2B4007480. D.H. is supported by the Helmholtz Association of German
Research Centers (grant FKZ HRSF-0036, project POLEX). The authors acknowledge the
World Climate Research Programme’s Working Group on Coupled Modelling, which is
responsible for CMIP, and thank the climate modelling groups (listed in Supplementary
Table 1) for producing and making available their model output. For CMIP, the US
Department of Energy’s PCMDI provides coordinating support and led development of
software infrastructure in partnership with the Global Organization for Earth System
Science Portals.The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as
Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA,
and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational
studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments sup port the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or
suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational
studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather
Spatio-temporal dynamics of quantum-well excitons
We investigate the lateral transport of excitons in ZnSe quantum wells by
using time-resolved micro-photoluminescence enhanced by the introduction of a
solid immersion lens. The spatial and temporal resolutions are 200 nm and 5 ps,
respectively. Strong deviation from classical diffusion is observed up to 400
ps. This feature is attributed to the hot-exciton effects, consistent with
previous experiments under cw excitation. The coupled transport-relaxation
process of hot excitons is modelled by Monte Carlo simulation. We prove that
two basic assumptions typically accepted in photoluminescence investigations on
excitonic transport, namely (i) the classical diffusion model as well as (ii)
the equivalence between the temporal and spatial evolution of the exciton
population and of the measured photoluminescence, are not valid for
low-temperature experiments.Comment: 8 pages, 6 figure
Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications
Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed
The natural history and genotype–phenotype correlations of TMPRSS3 hearing loss:an international, multi-center, cohort analysis
TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype–phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.</p
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV
Peer reviewe
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Search for heavy neutrinos and W bosons with right-handed couplings in proton - proton collisions at \sqrt = 8TeV
A search for heavy, right-handed neutrinos, Nℓ ( ℓ=e,μ ), and right-handed WR bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton–proton collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1 . For models with strict left-right symmetry, and assuming only one Nℓ flavor contributes significantly to the WR decay width, the region in the two-dimensional (MWR,MNℓ) mass plane excluded at a 95 % confidence level extends to approximately MWR=3.0TeV and covers a large range of neutrino masses below the WR boson mass, depending on the value of MWR . This search significantly extends the (MWR,MNℓ) exclusion region beyond previous results. Electronic supplementary material The online version of this article (doi:10.1140/epjc/s10052-014-3149-z) contains supplementary material, which is available to authorized users
- …