30 research outputs found

    2D cine DENSE with low encoding frequencies accurately quantifies cardiac mechanics with improved image characteristics

    Get PDF
    BACKGROUND: Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. The encoding frequency (k(e)) maps the measured phase to tissue displacement while the strength of the encoding gradients affects image quality. 2D cine DENSE studies have used a k(e) of 0.10 cycles/mm, which is high enough to remove an artifact-generating echo from k-space, provide high sensitivity to tissue displacements, and dephase the blood pool. However, through-plane dephasing can remove the unwanted echo and dephase the blood pool without relying on high k(e). Additionally, the high sensitivity comes with the costs of increased phase wrapping and intra-voxel dephasing. We hypothesized that k(e) below 0.10 cycles/mm can be used to improve image characteristics and provide accurate measures of cardiac mechanics. METHODS: Spiral cine DENSE images were obtained for 10 healthy subjects and 10 patients with a history of heart disease on a 3 T Siemens Trio. A mid-ventricular short-axis image was acquired with different k(e): 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm. Peak twist, circumferential strain, and radial strain were compared between acquisitions employing different k(e) using Bland-Altman analyses and coefficients of variation. The percentage of wrapped pixels in the phase images at end-systole was calculated for each k(e). The dephasing of the blood signal and signal to noise ratio (SNR) were also calculated and compared. RESULTS: Negligible differences were seen in strains and twist for all k(e) between 0.04 and 0.10 cycles/mm. These differences were of the same magnitude as inter-test differences. Specifically, the acquisitions with 0.04 cycles/mm accurately quantified cardiac mechanics and had zero phase wrapping. Compared to 0.10 cycles/mm, the acquisitions with 0.04 cycles/mm had 9 % greater SNR and negligible differences in blood pool dephasing. CONCLUSIONS: For 2D cine DENSE with through-plane dephasing, the encoding frequency can be lowered to 0.04 cycles/mm without compromising the quantification of twist or strain. The amount of wrapping can be reduced with this lower value to greatly simplify the input to unwrapping algorithms. The strain and twist results from studies using different encoding frequencies can be directly compared

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore