89 research outputs found

    Antimicrobial resistance in neonates with suspected sepsis

    Get PDF
    SettingNobel Medical College and Teaching Hospital, Biratnagar, Nepal.ObjectiveTo determine the pattern of antimicrobial resistance and hospital exit outcomes in neonates with suspected sepsis in a tertiary neonatal intensive care unit (NICU).DesignThis hospital-based cohort study was conducted to follow patients from January to December 2019. All identified cases of suspected sepsis were enlisted from hospital records.ResultsSepsis was suspected in 177 (88%) of the 200 cases admitted in the NICU; 52 (29%) were culture-positive. Pseudomonas was the predominant organism isolated (n = 40; 78%), followed by coagulase negative staphylococcus (n = 12, 23%). Nine (17%) of the 52 isolates were resistant to the Access and Watch group of antibiotics, including some resistance to Reserve group drugs such as imipenem and linezolid. Most treated cases (n = 170, 96%) improved, although 7 (4%) left against medical advice.ConclusionMost of the pathogens were resistant to WHO Access and Watch antibiotics and occasional resistance was observed to Reserve group drugs. Most sepsis was caused by Gram-negative bacilli. Improving turnaround times for antibiotic sensitivity testing using point-of-care testing, and a greater yield of culture-positive results are needed to enhance the management of neonatal sepsis

    Tissue Harvester with Functional Valve (THFV): Shidham's device for reproducibly higher specimen yield by fine needle aspiration biopsy with easy to perform steps

    Get PDF
    BACKGROUND: Fine needle aspiration biopsy (FNAB) cytology has been a highly effective methodology for tissue diagnosis and for various ancillary studies including molecular tests. In addition to other benefits, FNAB predominantly retrieves the diagnostic loosely cohesive cells in the lesion as compared to the adjacent supporting stroma with relatively higher cohesiveness. However, FNAB procedure performed with currently available resources is highly skill dependent with inter-performer variability, which compromises its full potential as a diagnostic tool. In this study we report a device overcoming these limitations. METHODS: 'Tissue Harvester with Functional Valve' (THFV) was evaluated as part of a phase 1 National Institute of Health (NIH) research grant under Small Business Technology Transfer (STTR) Program. Working prototypes of the device were prepared. Each of the four cytopathologists with previous cytopathology fellowship training and experience in performing FNAB evaluated 5 THFV and 5 hypodermic needles resulting in 40 specimens (20 with THFV, 20 with hypodermic needles). A piece of fresh cattle liver stuffed in latex glove was used as the specimen. Based on these results a finished design was finalized. RESULTS: The smears and cell blocks prepared from the specimens obtained by THFV were superior in terms of cellularity to specimens obtained with hypodermic needles. The tissuecrit of specimens obtained with THFV ranged from 70 to 100 μl (mean 87, SD 10), compared to 17 to 30 μl (mean 24, SD 4) with conventional hypodermic needles (p < .0001, Student t-test). The technical ease [on a scale of 1 (easy) to 5 (difficult)] with THFV ranged from 1 to 2 as compared to 2 to 3 with hypodermic needles. CONCLUSION: The specimen yield with the new THFV was significantly higher when compared to hypodermic needles. Also, the FNAB procedure with THFV was relatively easier in comparison with hypodermic needles. The final version of Shidham's THFV device would improve the FNAB specimen yield by eliminating the skill factor. The increased specimen yield by this device would also facilitate wider application of FNAB specimens for various ancillary tests, including molecular tests

    Interaction of Temperature and Light in the Development of Freezing Tolerance in Plants

    Get PDF
    Abstract Freezing tolerance is the result of a wide range of physical and biochemical processes, such as the induction of antifreeze proteins, changes in membrane composition, the accumulation of osmoprotectants, and changes in the redox status, which allow plants to function at low temperatures. Even in frost-tolerant species, a certain period of growth at low but nonfreezing temperatures, known as frost or cold hardening, is required for the development of a high level of frost hardiness. It has long been known that frost hardening at low temperature under low light intensity is much less effective than under normal light conditions; it has also been shown that elevated light intensity at normal temperatures may partly replace the cold-hardening period. Earlier results indicated that cold acclimation reflects a response to a chloroplastic redox signal while the effects of excitation pressure extend beyond photosynthetic acclimation, influencing plant morphology and the expression of certain nuclear genes involved in cold acclimation. Recent results have shown that not only are parameters closely linked to the photosynthetic electron transport processes affected by light during hardening at low temperature, but light may also have an influence on the expression level of several other cold-related genes; several cold-acclimation processes can function efficiently only in the presence of light. The present review provides an overview of mechanisms that may explain how light improves the freezing tolerance of plants during the cold-hardening period

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    Get PDF
    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector

    Genome-wide mRNA expression correlates of viral control in CD4+ T-cells from HIV-1-infected individuals

    Get PDF
    There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control
    corecore