25 research outputs found

    Forest-Stream Linkages: Effects of Terrestrial Invertebrate Input and Light on Diet and Growth of Brown Trout (Salmo trutta) in a Boreal Forest Stream

    Get PDF
    Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta) and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout

    Neural Circuits Underlying Rodent Sociality: A Comparative Approach

    Get PDF
    All mammals begin life in social groups, but for some species, social relationships persist and develop throughout the course of an individual’s life. Research in multiple rodent species provides evidence of relatively conserved circuitry underlying social behaviors and processes such as social recognition and memory, social reward, and social approach/avoidance. Species exhibiting different complex social behaviors and social systems (such as social monogamy or familiarity preferences) can be characterized in part by when and how they display specific social behaviors. Prairie and meadow voles are closely related species that exhibit similarly selective peer preferences but different mating systems, aiding direct comparison of the mechanisms underlying affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the mechanisms involved in individual social behavior processes, as well as specific complex social patterns. Contrasts between vole species exemplify how the laboratory study of diverse species improves our understanding of the mechanisms underlying social behavior. We identify several additional rodent species whose interesting social structures and available ecological and behavioral field data make them good candidates for study. New techniques and integration across laboratory and field settings will provide exciting opportunities for future mechanistic work in non-model species

    The pch2Δ Mutation in Baker's Yeast Alters Meiotic Crossover Levels and Confers a Defect in Crossover Interference

    Get PDF
    Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Δ mutants display wild-type crossover levels on a small (III) chromosome, but increased levels on larger (VII, VIII, XV) chromosomes. Second, pch2Δ mutants show defects in crossover interference. Third, crossovers observed in pch2Δ require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Δ mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Comprehensive molecular characterization of the hippo signaling pathway in cancer

    Get PDF
    Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional “omic” data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era
    corecore