82 research outputs found

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Trypanosoma brucei PUF9 Regulates mRNAs for Proteins Involved in Replicative Processes over the Cell Cycle

    Get PDF
    Many genes that are required at specific points in the cell cycle exhibit cell cycle–dependent expression. In the early-diverging model eukaryote and important human pathogen Trypanosoma brucei, regulation of gene expression in the cell cycle and other processes is almost entirely post-transcriptional. Here, we show that the T. brucei RNA-binding protein PUF9 stabilizes certain transcripts during S-phase. Target transcripts of PUF9—LIGKA, PNT1 and PNT2—were identified by affinity purification with TAP-tagged PUF9. RNAi against PUF9 caused an accumulation of cells in G2/M phase and unexpectedly destabilized the PUF9 target mRNAs, despite the fact that most known Puf-domain proteins promote degradation of their target mRNAs. The levels of the PUF9-regulated transcripts were cell cycle dependent, peaking in mid- to late- S-phase, and this effect was abolished when PUF9 was targeted by RNAi. The sequence UUGUACC was over-represented in the 3′ UTRs of PUF9 targets; a point mutation in this motif abolished PUF9-dependent stabilization of a reporter transcript carrying the PNT1 3′ UTR. LIGKA is involved in replication of the kinetoplast, and here we show that PNT1 is also kinetoplast-associated and its over-expression causes kinetoplast-related defects, while PNT2 is localized to the nucleus in G1 phase and redistributes to the mitotic spindle during mitosis. PUF9 targets may constitute a post-transcriptional regulon, encoding proteins involved in temporally coordinated replicative processes in early G2 phase

    Inter-MAR Association Contributes to Transcriptionally Active Looping Events in Human β-globin Gene Cluster

    Get PDF
    Matrix attachment regions (MARs) are important in chromatin organization and gene regulation. Although it is known that there are a number of MAR elements in the β-globin gene cluster, it is unclear that how these MAR elements are involved in regulating β-globin genes expression. Here, we report the identification of a new MAR element at the LCR(locus control region) of human β-globin gene cluster and the detection of the inter-MAR association within the β-globin gene cluster. Also, we demonstrate that SATB1, a protein factor that has been implicated in the formation of network like higher order chromatin structures at some gene loci, takes part in β-globin specific inter-MAR association through binding the specific MARs. Knocking down of SATB1 obviously reduces the binding of SATB1 to the MARs and diminishes the frequency of the inter-MAR association. As a result, the ACH establishment and the α-like globin genes and β-like globin genes expressions are affected either. In summary, our results suggest that SATB1 is a regulatory factor of hemoglobin genes, especially the early differentiation genes at least through affecting the higher order chromatin structure

    Primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40 years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15 mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC

    Institutional effects on nurses’ working conditions: a multi-group comparison of public and private non-profit and for-profit healthcare employers in Switzerland

    Get PDF
    Background: In response to the need for competitive recruitment of nurses resulting from the worldwide nursing shortage, employers need to attract and retain nurses by promoting their competitive strengths in their working conditions (WCS) and by addressing their competitive weaknesses. This study investigated workplace differences between public hospitals (PuHs), private for-profit hospitals (PrHs), socio- medical institutions (SOMEDs), home care services (HCs), private medical offices (PrOs) and non-profit organisations (NPOs), helping to provide a foundation for competition-oriented institutional employer branding and to increase transparency in the labour market for nurses. Methods: Data from the Swiss Nurses at Work study of the career paths of 11 232 nurses who worked in Switzerland between 1970 and 2014 were subjected to secondary analysis, assessing the effect of institutional characteristics on self-reported determinants of job satisfaction (such as WCS) using multivariate linear regression and post hoc tests with Bonferroni-adjusted significance levels. Principal component analysis was used to reduce the number of WCS in the original study. Results: Nurses at PuHs and PrHs were less likely to experience autonomy, flexibility of work hours and participation in decision-making than those at other workplaces. Although PuHs were rated higher than PrHs in terms of satisfaction with salary and advancement opportunities, they were associated with more alienating work factors, such as stress and aggression. SOMED workplaces were significantly more often associated with alienating conditions and low job satisfaction, but were rated higher than the other institutions in terms of participation in decision-making. The nurses’ ratings implied that PrO workplaces were more likely to offer a mild work environment, social support and recognition than other institutions, but that advancement opportunities were limited. NPO workplaces were associated with the highest degree of autonomy, flexibility, participation, recognition, organisational commitment and job satisfaction. In these respects, HC and NPO workplaces received similar ratings, although the HC workplaces were associated with a significantly lower organisational commitment and significantly lower job satisfaction. Conclusions: Due to their structural characteristics, NPOs, SOMEDs and HCs can attract nurses seeking greater self-determination, PuHs can attract career-oriented nurses, and PrOs and PrHs are likely to attract nurses through offering less-stressful working conditions

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore