117 research outputs found

    Temporal compressive edge imaging enabled by a lensless diffuser camera

    Full text link
    Lensless imagers based on diffusers or encoding masks enable high-dimensional imaging from a single shot measurement and have been applied in various applications. However, to further extract image information such as edge detection, conventional post-processing filtering operations are needed after the reconstruction of the original object images in the diffuser imaging systems. Here, we present the concept of a temporal compressive edge detection method based on a lensless diffuser camera, which can directly recover a time sequence of edge images of a moving object from a single-shot measurement, without further post-processing steps. Our approach provides higher image quality during edge detection, compared with the conventional post-processing method. We demonstrate the effectiveness of this approach by both numerical simulation and experiments. The proof-of-concept approach can be further developed with other image post-process operations or versatile computer vision assignments toward task-oriented intelligent lensless imaging systems.Comment: 5 pages, 4 figure

    Protective effect of grifolin against brain injury in an acute cerebral ischemia rat model

    Get PDF
    Purpose: To evaluate the protective effects of grifolin against brain injury in an acute cerebral ischemia rat model.Methods: Rats were assigned to five groups: control, negative control, and grifolin (50, 100, and 200 mg/kg, p.o.) treated groups, which received the drug for 2 weeks. All the animals were sacrificed at the end of the protocol, and tissue homogenates were prepared from isolated brain tissue. Glutathione peroxidase (GPX), superoxide dismutase (SOD), malondialdehyde (MDA), and nitric oxide (NO), as oxidative stress indicators, were determined for the tissue homogenates of the ischemic rats. Inflammatory mediators (cytokines and nuclear factor kappa B p65, NF κB), DNA damage, and ATP and caspase 3 levels in the tissue homogenates were also assessed.Results: Treatment with grifolin increased SOD and GPX significantly and decreased MDA and NO levels in tissue homogenates of the cerebral ischemic rats compared with those in the negative control group (p < 0.05). Treatment with grifolin also attenuated the altered levels of inflammatory mediators (cytokines and NF-κB), caspase 3, and ATP levels in the tissue homogenate of cerebral ischemic rats (p < 0.05). The results of comet assay on the tissue homogenate suggest that treatment with grifolin reduced or prevented damage.Conclusions: The results show that treatment with grifolin protects against neuronal damage in acute cerebral ischemic rats via its anti-inflammatory and anti-oxidant properties.Keywords: Neuroprotection, Cerebral ischemia, Brain injury, DNA, Grifolin, Anti oxidan

    Helicobacter pylori-Induced Histone Modification, Associated Gene Expression in Gastric Epithelial Cells, and Its Implication in Pathogenesis

    Get PDF
    Histone modifications are critical in regulating gene expression, cell cycle, cell proliferation, and development. Relatively few studies have investigated whether Helicobacter pylori, the major cause of human gastric diseases, affects histone modification. We therefore investigated the effects of H. pylori infection on histone modifications in a global and promoter-specific manner in gastric epithelial cells. Infection of gastric epithelial cells by wild-type H. pylori induced time- and dose-dependent dephosphorylation of histone H3 at serine 10 (H3 Ser10) and decreased acetylation of H3 lysine 23, but had no effects on seven other specific modifications. Different cag pathogenicity island (PAI)-containing-clinical isolates showed similar abilities to induce H3 Ser10 dephosphorylation. Mutation of cagA, vacA, nonphosphorylateable CagA mutant cagAEPISA, or disruption of the flagella showed no effects, while deletion of the entire cagPAI restored the H3 Ser10 phosphorylation to control levels. Analysis of 27 cagPAI mutants indicated that the genes that caused H3 Ser10 dephosphorylation were similar to those that were previously found to induce interleukin-8, irrespective of CagA translocation. This effect was independent of ERK or p38 pathways and type I interferon signaling. Additionally, c-Jun and hsp70 gene expression was associated with this histone modification. These results demonstrate that H. pylori alters histone modification and host response via a cagA-, vacA-independent, but cagPAI-dependent mechanisms, which contribute to its persistent infection and pathogenesis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    <it>Helicobacter pylori</it> infection induced gastric cancer; advance in gastric stem cell research and the remaining challenges

    No full text
    Abstract Helicobacter pylori infection is the major cause of gastric cancer, which remains an important health care challenge. Recent investigation in gastric stem cell or progenitor cell biology has uncovered valuable information in understanding the gastric gland renewal and maintenance of homeostasis, they also provide clues for further defining the mechanisms by which gastric cancer may originate and progress. Lgr5, Villin-promoter, TFF2-mRNA and Mist have recently been identified as gastric stem/progenitor cell markers; their identification enriched our understanding on the gastric stem cell pathobiology during chronic inflammation and metaplasia. In addition, advance in gastric cancer stem cell markers such as CD44, CD90, CD133, Musashi-1 reveal novel information on tumor cell behavior and disease progression implicated for therapeutics. However, two critical questions remain to be of considerable challenges for future exploration; one is how H. pylori or chronic inflammation affects gastric stem cell or their progenitors, which give rise to mucus-, acid-, pepsinogen-, and hormone-secreting cell lineages. Another one is how bacterial infection or inflammation induces oncogenic transformation and propagates into tumors. Focus on the interactions of H. pylori with gastric stem/progenitor cells and their microenvironment will be instrumental to decipher the initiation and origin of gastric cancer. Future studies in these areas will be critical to uncover molecular mechanisms of chronic inflammation-mediated oncogenic transformation and provide options for cancer prevention and intervention. We review recent progress and discuss future research directions in these important research fields.</p
    corecore