212 research outputs found

    Adolescent male chimpanzees (Pan troglodytes) form social bonds with their brothers and others during the transition to adulthood

    Full text link
    Social relationships play an important role in animal behavior. Bonds with kin provide indirect fitness benefits, and those with nonkin may furnish direct benefits. Adult male chimpanzees (Pan troglodytes) exhibit social bonds with maternal brothers as well as unrelated adult males, facilitating cooperative behavior, but it is unclear when these bonds develop. Prior studies suggest that social bonds emerge during adolescence. Alternatively, bonds may develop during adulthood when male chimpanzees can gain fitness benefits through alliances used to compete for dominance status. To investigate these possibilities and to determine who formed bonds, we studied the social relationships of adolescent and young adult male chimpanzees (N = 18) at Ngogo in Kibale National Park, Uganda. Adolescent male chimpanzees displayed social bonds with other males, and they did so as often as did young adult males. Adolescent and young adult males frequently joined subgroups with old males. They spent time in proximity to and grooming with old males, although they also did so with their age peers. Controlling for age and age difference, males formed strong association and proximity relationships with their maternal brothers and grooming relationships with their fathers. Grooming bonds between chimpanzee fathers and their adolescent and young adult sons have not been documented before and are unexpected because female chimpanzees mate with multiple males. How fathers recognize their sons and vice versa remains unclear but may be due to familiarity created by relationships earlier in development.Adolescent male chimpanzees, by age 12 years, have as many strong grooming bonds as do young adults.Research HighlightsAdolescent male chimpanzees form social bonds with other males.Bonds were common between unrelated males, but frequent with maternal brothers, peers, old males, and fathers.Fathers may be important for male chimpanzees transitioning to adulthood.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153616/1/ajp23091.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153616/2/ajp23091_am.pd

    Presence of exon 5-deleted oestrogen receptor in human breast cancer: functional analysis and clinical significance.

    Get PDF
    A variant form of the human oestrogen receptor (ER) mRNA lacking sequences encoded within exon 5 has been described (Fuqua SAW, Fitzgerald SD, Chamness GC, Tandon AK, McDonnell DP, Nawaz Z, O'Malloy BW, McGuire WL 1991, Cancer Res 51: 105-109). We have examined the expression of the exon 5-deleted ER (HE delta5) mRNA variant in breast biopsies using reverse transcriptase polymerase chain reaction (RT - PCR). HE delta5 mRNA was present in only 13% of non-malignant breast tissues compared with 32% of carcinomas (95% CI, P=0.05). Presence of the HE delta5 mRNA was associated with the presence of immunohistochemically detected ER (P=0.015) and progesterone receptor (PR) (P=0.02). There was a positive correlation between the presence of HE delta5 and disease-free survival (P=0.05), suggesting that the presence of HE delta5 may be an indicator of better prognosis. We have raised a monoclonal antibody specific to the C-terminal amino acids of HE delta5. This antibody recognized the variant but not the wild-type ER protein. We show that HE delta5 protein is present in breast cancer using immunohistochemical techniques. We also analysed trans-activation by HE delta5 in mammalian cells and showed that, in MCF-7 cells, HE delta5 competes with wild-type ER to inhibit ERE-dependent trans-activation. Our results indicate that this variant is unlikely to be responsible for endocrine resistance of breast cancer, but its presence at both the mRNA and protein level suggest that it may, nevertheless, be involved in regulating the expression of oestrogen-responsive genes in breast cancer

    Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers

    Get PDF
    We examined the occurrence of seasonal hypoxia (O2&lt;2 mg l-1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1-10 g C m-2 d-1), and lower off the Rhône River (<1 g C m-2 d-1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia

    Extensive population genetic structure in the giraffe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p

    Gut evacuation rate and grazing impact of the krill Thysanoessa raschii and T. inermis

    Get PDF
    Gut evacuation rates and ingestion rates were measured for the krill Thysanoessa raschii and T. inermis in Godthåbsfjord, SW Greenland. Combined with biomass of the krill community, the grazing potential on phytoplankton along the fjord was estimated. Gut evacuation rates were 3.9 and 2.3 h−1 for T. raschii and T. inermis, respectively. Ingestion rates were 12.2 ± 7.5 µg C mg C−1 day−1 (n = 4) for T. inermis and 4.9 ± 3.2 µg C mg C−1 day−1 (n = 4) for T. raschii, corresponding to daily rations of 1.2 and 0.5 % body carbon day−1. Clearance experiments conducted in parallel to the gut evacuation experiment gave similar results for ingestion rates and daily rations. Krill biomass was highest in the central part of the fjord’s length, with T. raschii dominating. Community grazing rates from krill and copepods were comparable; however, their combined impact was low, estimated as <1 % of phytoplankton standing stock being removed per day during this late spring study

    The Glucuronyltransferase GlcAT-P Is Required for Stretch Growth of Peripheral Nerves in Drosophila

    Get PDF
    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore