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Abstract  26 

The adaptive value of close social bonds and social networks has been demonstrated in a variety of 27 

vertebrate taxa. While the effect of predators on populations is well established, disturbance by 28 

humans is increasingly being identified as affecting the behaviour and reproductive success of 29 

animals and can have significant impacts on their survival. We used a concurrent analysis of two 30 

adjacent giraffe Giraffa camelopardalis populations in Kenya to determine whether human activities 31 

and high predation affected their social networks. One study site was a premier tourist destination 32 

with a high volume of human activity in the form of tourist traffic and lodge infrastructure, alongside 33 

a high density of lions which preferentially prey on giraffe calves; the other was a private wildlife 34 

conservancy with minimal human activity and no lion population. Giraffes in both networks showed 35 

preferred associations and avoidances of other individuals, which were independent of space use. 36 

Bond strength was lower in the population exposed to high levels of human activity and lions, and 37 

the network had lower density and clustering, and shorter path lengths, suggesting that it was more 38 

fragmented. We suggest that human activity and predator density may influence the patterns of 39 

social interactions in giraffes and highlight the importance of understanding the impact of tourism 40 

and management on the survival and success of wild animal populations.  41 

 42 
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1  INTRODUCTION 49 

The effects of predator presence on the behaviour of African ungulates are well established (Valeix 50 

et al. 2009a, b; Périquet et al. 2010; Creel et al. 2014; Ripple et al. 2014); however, there has been 51 

limited investigation into how these behavioural changes may influence the structure of social 52 

organisation of prey species, or the changes in network structure. Since social networks offer fitness 53 

benefits and may influence an individual’s survival (Silk 2007a, 2009; Brent et al. 2015; Goldenberg 54 

et al. 2016) and risk of disease (Drewe 2009; MacIntosh et al. 2012; VanderWaal et al. 2014a; 55 

Adelman et al. 2015), understanding how the social organisation of prey species responds to 56 

predation risk is an important, yet almost completely neglected, area of biology. Furthermore, it is 57 

well recognised that populations of African mammals are in decline (Craigie et al. 2010; Ogutu et al. 58 

2011; Ceballos et al. 2017), yet there is also an increasing appetite and economic justification for 59 

tourism in protected areas (Beale & Monaghan 2004), which is likely to impose significant 60 

disturbance on populations of resident animals (Green & Giese 2004; Kerbiriou et al. 2009). Given 61 

that disturbance by humans through tourism is increasing, it is critical that we understand how such 62 

disturbance affects the social organisation of animals to ensure species protection and balance this 63 

with the increasing economic justification for tourism in protected areas (Beale & Monaghan 2004). 64 

In this paper, we present a population-level analysis of the social organisation of an African ungulate 65 

species with variable social organisation, the giraffe Giraffa camelopardalis, comparing two adjacent 66 

populations exposed to different levels of human activity and density of lions. 67 

Fission-fusion social organisation, whereby group size and composition are constantly changing, 68 

characterises many taxa and is considered to be an adaptive response to changing environmental 69 

conditions (Green & Giese 2004; Aureli et al. 2008). Such a flexible social system is likely to have 70 

arisen as animals seek to balance the costs and benefits associated with grouping (Krause & Ruxton 71 

2002). Social bonds are considered to be a product of these trade-offs, whereby individuals gain 72 

benefits from associating with or avoiding other individuals (Palombit et al. 1997; Connor et al. 2000; 73 
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Silk 2007b); close bonds provide benefits such as enhanced infant survival (Silk et al. 2009), 74 

increased lifespan (Silk et al. 2010), lower stress levels (Crockford et al. 2008; Wittig et al. 2008) and 75 

reduced levels of aggression within groups (Haunhorst et al. 2017). Despite the prevalence of fission-76 

fusion social organisation in animals, and a large body of research investigating the causes, costs and 77 

benefits of different patterns of social organisation, the conclusions about what drives social 78 

structure remain highly variable (Patriquin et al. 2010). Even for the same species, different studies 79 

reach different conclusions, demonstrating the highly responsive nature of networks to local factors 80 

(Leu et al. 2016). 81 

Most animals do not exist in isolation and so it is beneficial to consider social organisation at a 82 

network level (Whitehead 2008). The application of network theory to the study of animal social 83 

organisation has allowed rapid advances in our understanding of population-level behaviour (Krause 84 

et al. 2007; Kurvers et al. 2014; Brent et al. 2015). A social network approach is useful because it 85 

provides a validated, quantitative approach to characterise both individual- and population-level 86 

social structure (Krause et al. 2007). Studying the social network of populations allows greater 87 

insight and understanding of processes which support disease transmission (VanderWaal et al. 88 

2014a; Mejía-Salazar et al. 2017), social learning (Hobaiter et al. 2014), and the evolution of social 89 

strategies (Cameron et al. 2009; Brent et al. 2015).  90 

The environmental factors affecting fission-fusion organisation in mammals include climate, 91 

resource availability and distribution, predation risk, group size and human influences (Lehmann & 92 

Boesch 2004; Couzin 2006; Lehmann et al. 2007; Sundaresan et al. 2007; Aureli et al. 2008; Kelley et 93 

al. 2011), but the factors influencing fission may differ from those driving fusion. For example, in 94 

African elephants Loxodonta africana, fission events are driven by resource availability and 95 

distribution, but fusion events are influenced by genetic relatedness (Archie et al. 2006, 2008; Chiyo 96 

et al. 2011). Variation in the effects of environmental variables on patterns of social organisation 97 

have also been found in brown bats Eptesicus fuscus (Willis & Brigham 2004; Metheny et al. 2008), 98 
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meerkats Suricata suricatta (Drewe et al. 2009; Madden et al. 2009), bottlenose dolphins Tursiops 99 

truncatus (Parsons et al. 2003; Möller & Harcourt 2008; Frère et al. 2010), chimpanzees Pan 100 

troglodytes (Lehmann et al. 2007; Langergraber et al. 2009), red ruffed lemurs Varecia rubra (Vasey 101 

2007) and humans Homo sapiens (Marlowe 2005).  102 

Disturbance by humans is increasingly being recognised as having significant effects on the 103 

behaviour and reproductive success of animals (Manor & Saltz 2003; Green & Giese 2004; 104 

Hebblewhite et al. 2005; Stankowich 2008; Bonnot et al. 2013) and can adversely affect the survival 105 

and management of wild populations (Carney & Sydeman 1999). Numerous studies have found that 106 

human activities can disrupt breeding (Giese 1996), influence mortality rates (Feare 1976; Wauters 107 

et al. 1997) and scare animals away from preferred feeding sites (Gander & Ingold 1997). How 108 

human disturbance influences social behaviour at a population level has been less well studied, but 109 

is likely to be associated with the disruption or prevention of natural behaviours. To date, few 110 

studies have used a network approach to investigate how human activity influences the structure or 111 

function of animal social networks. However, a study of how human activity affects the social bonds 112 

of spotted hyaenas Crocuta crocuta found that clans in areas with high levels of human activity 113 

showed lower density (less connectivity in the network), suggesting weaker social bonds (Belton et 114 

al. 2018). The disruption of typical social structures may have important fitness implications for 115 

individuals, but it is not clear how human activity influences these processes. Likewise, the impact of 116 

predators on populations of prey species is well documented (Ripple & Beschta 2003; Creel et al. 117 

2014), but it is not clear how predator density might influence social organisation at a population 118 

level. Only one previous study has attempted to quantify the effects of predation on network 119 

structure; the authors studied guppies Poecilia reticulata in a lab system (Kelley et al. 2011). They 120 

found that under predation, networks were higher in strength and connectedness, and individuals 121 

had more associates, than fish and networks under a low risk of predation. Groups under high 122 

predation risk also stayed together for longer, while groups under low risk disbanded more regularly 123 

(Kelley et al. 2011). 124 
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As a large, conspicuous fission-fusion species, giraffes present the ideal opportunity to study social 125 

structure dynamics. Social network methods have highlighted their non-random patterns of 126 

association (Bercovitch & Berry 2013a; Carter et al. 2013a, b; Malyjurkova et al. 2012), although 127 

there is no clear consensus on many aspects of giraffe social behaviour, and network structure has 128 

yet to be linked to fitness in this species. That said, one study has highlighted how the social network 129 

of giraffes influences their risk of exposure to pathogens (VanderWaal et al. 2014a). Giraffes inhabit 130 

a wide variety of landscapes and habitats throughout eastern and southern Africa, and their fission-131 

fusion social system potentially allows them to adapt their behavioural strategies to local 132 

environmental differences. 133 

Giraffe populations exist in a wide range of habitats, from deserts to woodland and savannah 134 

environments, and mean group size ranges from three to nine, depending on season, location and 135 

availability of conspecifics (Muller et al. 2018a). However, most studies examining social behaviour 136 

in giraffes focus on single, isolated populations, making it difficult to draw general conclusions about 137 

this species’ behavioural ecology. Comparing same-species networks under differing environmental 138 

conditions is an important tool in developing greater understanding of mechanisms underlying 139 

collective and social behaviour (Voelkl & Noë 2008; Sueur et al. 2009, 2011), although this is 140 

currently lacking for giraffes. Given that predator density  influences the population demography of 141 

giraffes (Muller 2018) and that population demography has a strong influence on patterns of social 142 

organisation (Faust 2006; Flack et al. 2006; Silk et al. 2006; Williams & Lusseau 2006; Kanngiesser et 143 

al. 2011), we suggest that general conclusions drawn from single-population studies must be 144 

interpreted with caution, since these results may represent how a specific social network responds 145 

to a particular set of circumstances that are not generalisable to other populations.  146 

In this study, we aim to examine the effects of disturbance on the social network structure of 147 

giraffes. We compare two populations of wild giraffes, each subjected to different levels of 148 

disturbance by human activity and predator presence. One population was classified as being under 149 
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‘high disturbance’ and the other under ‘low disturbance’ (see Methods for justification). We 150 

compare two aspects of sociality between the populations:  first, the motivation to bond with 151 

conspecifics, and second, how the results of bonding are manifested within the social network. The 152 

two available studies investigating network changes under predation (Kelley et al. 2011) and 153 

disturbance by humans (Belton et al. 2018) found varied results, so it is difficult to use these studies 154 

to predict what may happen in giraffes exposed to both pressures. However, given the evidence that 155 

disturbance by tourism disrupts normal group behaviour in animals (Green & Giese 2004; Lusseau & 156 

Bejder 2007; Ranaweerage et al. 2015), we predict that the social network of giraffes exposed to 157 

high levels of disturbance will be more fractured, and we test four hypotheses. High levels of 158 

disturbance will lead to i) lower bond strength, ii) lower density, as individuals disband following 159 

disturbance, iii) a lower number of sub-communities representing a more fractured society, and iv) 160 

shorter path length as individuals move around more due to high levels of disturbance by humans. 161 

Comparing two different wild populations presents several challenges since there are multiple 162 

factors which can vary between them, but they also present an opportunity to begin to understand 163 

the relative influence of different variables on social organisation. Performing a concurrent analysis 164 

of two populations has great value, especially if the populations are close and data collection and 165 

analytical methods are kept consistent (Farine & Whitehead 2015); this is the approach we take 166 

here. 167 

 168 

2  METHODS 169 

All experimental protocols and procedures employed in this study were approved by the University 170 

of Bristol Animal Welfare and Ethical Review Board (project number UB/11/003), the Kenya National 171 

Council for Science and Technology and the Kenya Wildlife Service.  172 

  173 

2.1  Study areas 174 
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We studied two populations of Rothschild’s giraffes Giraffa camelopardalis rothschildi; one was 175 

enclosed within Soysambu Conservancy (SC) and one was enclosed within Lake Nakuru National Park 176 

(LNNP), both of which are located south of Nakuru, Kenya between 00°22’S and 36°23'E. SC is a 177 

private wildlife conservancy (size 190 km2, 1670 m asl) surrounding Lake Elementeita; LNNP is a 178 

National Park (size 188 km2, 1759 m asl) surrounding Lake Nakuru. The two study sites are adjacent 179 

with a shared 7.8 km boundary along the west fenceline of SC and the east fenceline of LNNP (Figure 180 

1). An electrified game fence, across which no large mammals could pass, was a physical barrier 181 

between the two study sites. The climate, topography, soil types, vegetation and the diversity of 182 

flora and fauna found in each area are similar and they are part of the same biome and microclimate 183 

(Nicholson 1996; Omondi 2011).  184 

There are two notable differences between the study sites: (1) the density of lions, Panthera leo, and 185 

(2) the levels of human activity. Lions are the only predator to pose a significant threat to giraffes 186 

(Hirst 1969; Pienaar & De 1969; Foster & Dagg 1972; Dagg & Foster 1976; Strauss & Packer 2013). At 187 

the time of this study, LNNP contained 56 lions (Ogutu et al. 2012), which is a high density (0.3 188 

lion/km2) compared to more typical densities of 0.08 to 0.14 lion/km2 (East 1984; Creel & Creel 189 

1997). Preferential preying of lions upon giraffes has been identified as a problem in LNNP, along 190 

with observations of lions feeding on giraffe calf carcasses in the park (Kenya Wildlife Service 2002; 191 

Brenneman et al. 2009). During the same time, SC was free of lions and had been for several 192 

decades (Hugh George Cholmondeley, owner of Soysambu Ranch, personal communication). 193 

Additionally, the levels of human-related disturbance also varied between sites; LNNP is classified as 194 

a ‘Premium Park’ (Maingi et al. 2016) and is the second largest revenue-producing National Park in 195 

Kenya. In 2012 it received 253,500 visitors (Muthoka et al. 2017). It has an extensive road network, 196 

contains five large tourist lodges and several campsites. In contrast, SC is a privately owned and 197 

managed conservation area, which changed its main use from a private cattle farm to a wildlife 198 

conservation area in 2009. It was an under-utilised area for ecotourism (Kenya Wildlife Service 2004) 199 

and received significantly fewer visitors per year than LNNP. At the time of this study, there was an 200 



10 
 

average of 1 tourist vehicle per day in SC (Z. Muller, personal observation), the area had a limited 201 

road network and no tourism infrastructure. 202 

To acknowledge differences in predator density and levels of human activity between sites, and 203 

because we could not discriminate between effects of predation and human disturbance with only 204 

these two populations, we used more general descriptions of ‘low disturbance’ for SC and ‘high 205 

disturbance’ for LNNP. We accept that we were unable to quantify predation risk in each population, 206 

but human-related disturbance and tourism can be considered a form of predation risk (Frid & Dill 207 

2002; Amo et al. 2006; Geffroy et al. 2015). Furthermore, high levels of human activity have been 208 

shown to alter the structure of networks (Belton et al. 2018), which supports our decision to refer to 209 

the two populations in terms of varying levels of disturbance.  210 

 211 

2.2  Data collection 212 

We carried out a three-month pilot study in each site (SC: March-May 2010; LNNP: March to May 213 

2011) to identify, sex and age all individuals, and to develop an appropriate definition for ‘group’. 214 

We also used this time to determine a distance threshold in which giraffes could be approached by 215 

vehicle without being alarmed by our presence; this was typically 100 m – 500 m. Giraffes were well 216 

habituated to the presence of vehicles, and we took care to respect this distance threshold during 217 

data collection so as not to influence their natural behaviour. However, it was not necessary to get 218 

so close to groups since we used a zoom lens to obtain digital photographs of group members, and 219 

binoculars to verify numbers, so data were usually collected from a much greater distance than the 220 

‘disturbance’ threshold (typically >500 m to 1 km, depending on road layout and visibility). Following 221 

the pilot study, data were collected for nine months in each study site (SC May 2010 – January 2011; 222 

LNNP May 2011 – January 2012). All giraffes were individually identified (ID) using unique coat 223 

patterns (see Muller (2018) for full details of ID methodology and site map). Each study site was 224 

segmented into quarters. Giraffes were searched for by driving transects along the road network in 225 
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each area, using a 4x4 vehicle. All areas (i.e. the entire study site) were searched each day. Roads 226 

taken and direction driven were randomised. Data collection started at 06:30 hrs and ended at 18:30 227 

hrs (UTC + 3 h Standard Time). Upon sighting an individual or group of giraffes the vehicle was 228 

stopped at an appropriate distance so as not to influence their behaviour. There is no standard 229 

definition of group size for giraffes. Previous studies use either inter-individual distance thresholds, 230 

which ranged from 100 m (Jeugd & Prins 2000), through 400-500 m (Leuthold 1979; Carter 2013; 231 

VanderWaal et al. 2014b), to 1000 m (Foster 1966; Pratt & Anderson 1985), or similarity of 232 

behavioural state (Backhaus 1961; Shorrocks & Croft 2009). However, a common theme was that 233 

giraffe groups are self-defining; distances within groups are substantially smaller than distances 234 

between groups (Shorrocks & Croft 2009; Carter 2013; VanderWaal et al. 2014b). During the pilot 235 

phase we also found that groups were self-defining; the proximity of individuals within a group was 236 

typically up to 200 m, but inter-group distances were always above 1 km. We also noted that group 237 

members typically were synchronised in their behaviour. Therefore, we set the definition of a group 238 

as ‘all individuals within 1 km of each other and engaged in generally similar behaviour’.  The 239 

individual ID of all group members was recorded. We sampled each group for exactly 30 min to 240 

standardise observation time between groups and ensure that all members of the group had been 241 

recorded. We categorised each data point using a ‘reliability score’ of 1: certain that all group 242 

members had been observed; 2: unsure if all group members had been observed; or 3: certain that 243 

all group members had not been observed. Only data points of score 1 were used in the analyses to 244 

ensure complete accuracy of identifications of group membership. Data reliability score was not 245 

influenced by habitat type or complexity; there were equal proportions of scores for each habitat 246 

type/complexity. All methods and the data collection procedure were standardised between sites to 247 

ensure consistency and comparability of data sets. At the time of this study, SC contained 77 248 

giraffes: 26 females, 25 males and 26 calves (individuals < 1 year), and LNNP contained 89 giraffes: 249 

44 females, 40 males and 5 calves (Muller 2018).  250 

2.3  Social network analysis 251 
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Data from each population were analysed separately, since each network was discrete with no 252 

migration between populations. Associations were defined using the gambit of the group, whereby 253 

all individuals within a group were said to be associated (Croft et al. 2008) and associations were 254 

symmetrical (i.e. if A is associated with B, then B is also associated with A). We created an adjacency 255 

matrix (an NxN matrix describing the edges in the network) for each site and populated this with the 256 

pair-wise associations observed between each pair of individuals. The pair-wise associations (edge 257 

weights, or cell values in the adjacency matrix) were calculated using the Simple Ratio Index (SRI) 258 

(Cairns & Schwager 1987; Whitehead 2008; Hoppitt & Farine 2018), which estimates the proportion 259 

of time that two individuals spent together. We calculated the SRI using the formula: SRI = X / (YA + 260 

YB – X), where A and B are individuals in a dyad, YA and YB are observations of individuals A and B 261 

respectively, and X is the interactions between A and B. The SRI accounts for sample size and 262 

number of observations of each individual and provides a quantitative measure of the frequency of 263 

co-occurrence while also controlling for effort: 0 indicates animals that were never observed 264 

together and 1 indicates animals always observed together (Whitehead 2008)). To quantify bond 265 

strength between individuals (hypothesis i), we examined i) the mean edge weight i.e. SRI value 266 

describing strength of association between two individuals, and ii) the coefficient of variation (CV) of 267 

edge weights for all individuals in the network. High SRI and CV values represent focused association 268 

with specific individuals, i.e. individuals with high SRI and CV values have few, preferred associates 269 

(strong bonds). Low SRI and CV values represent more non-specific patterns of association, where 270 

individuals associate more freely with a wider set of conspecifics (weaker bonds) (Whitehead 2008; 271 

Leu et al. 2016). 272 

Since there were differences in the calf cohort between the two study sites (Muller 2018), we ran 273 

the analyses twice for each population, once on the whole network and once on a filtered network 274 

which excluded calves, to understand the influence of demography on the network. We did this to 275 

mitigate the effects of demographic differences between the two sites, to understand the possible 276 

influence of different proportions of calves in each network, and because calves are unlikely to 277 
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contribute towards adult grouping decisions (Cameron & du Toit 2005; Muller et al. 2018a). That 278 

said, exclusion of calves does not remove the effects of their presence on adult decisions. 279 

We calculated further measures to quantify properties of other elements of the network. Density 280 

(hypothesis ii) is the number of observed associations in a network, divided by the possible number 281 

of associations (Farine & Whitehead 2015). A low density score indicates that few individuals 282 

associate within social groups (Madden et al. 2009), while a high density score indicates that many 283 

of the possible associations have occurred, and animals are highly social among and between 284 

groups. Density is standardised by the maximum weight in the network, and is calculated based on 285 

the frequency of the interactions within the network (Whitehead 2008). To test hypothesis iii, we 286 

calculated clustering coefficient, which measures the extent to which an individual is connected to 287 

other individuals. It describes how many cliques are in a network: high clustering coefficient values 288 

indicate highly connected groups of individuals (Newman 2003; Whitehead 2008). To test hypothesis 289 

iv, we calculated path length as a measure of how connected or separated each individual is. Path 290 

length quantifies the number of edges connecting a pair of nodes, i.e. how many individuals are 291 

required to connect two non-directly connected individuals (Wey et al. 2008). We used weighted 292 

path lengths, which accounts for the SRI values between individuals in the network. All analyses 293 

were done in R (R Core Development Team 2017) using the asnipe (Farine 2013) and igraph (Csárdi 294 

& Nepusz 2006) packages.  295 

2.4  Statistical significance testing using permutation tests 296 

Due to the non-independent nature of network data, null models were used as a way of testing 297 

hypotheses. Null models use observed networks to randomly generate comparable networks 298 

containing the same number of nodes and edges, and replicate observed patterns of association, but 299 

without the process of interest. By comparing observed networks to null models, non-social factors 300 

which influence the associative behaviour of animals can be accounted for (e.g. home range overlap, 301 

temporal effects, etc.) and specific hypotheses about social processes can be tested (VanderWaal et 302 
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al. 2014a; Adelman et al. 2015; Farine 2017). To test if bond strength in each observed network was 303 

significantly different from what would be expected by chance (hypothesis i), the mean SRI and CV 304 

values for the observed network were compared to a distribution of mean SRI and CV values 305 

generated using 1000 permutations of the network data (Manly 2006). We used pre-network data 306 

permutations as these types of null model can account for inherent structure in the observed data, 307 

and are the most reliable at detecting real effects i.e. they reduce type I and type II error rates; see 308 

Farine (2017) for a full review. Our null models controlled for sampling period and spatial 309 

distribution of individuals to ensure that the distribution of individuals in the null models remained 310 

consistent with the patterns in the observed data. This accounts for the influence of any space-311 

related factors (i.e. individual home ranges, habitat type or space use) and sampling-period factors 312 

(weather, resources abundance)  and creates a null model in which the structure of the data (space 313 

and time) are retained, but individual variation is not (Aplin et al. 2015; Spiegel et al. 2016; Muller et 314 

al. 2018b). This ensures that the only process which is randomised is the process of interest, i.e. the 315 

social associations - who is observed with whom - and allowed us to make inferences about social 316 

organisation independent of temporal or spatial variables. To control for effects of spatial 317 

distribution, we split the study area into 40 grid squares, each measuring 0.1 latitude x 0.02 318 

longitude and data swaps in the null model were restricted to within each spatial grid, so that data 319 

were only swapped between individuals that were observed in the same location during the same 320 

time period (Aplin et al. 2015). The observed variance in latitude and longitude were 0.8 and 1.1 of a 321 

decimal degree respectively.  322 

A p-value was obtained by comparing the observed mean SRI and CV value to the distribution of the 323 

mean SRI and CV values from the 1000 random networks (p-values stabilised after ~200 324 

permutations of the observed data, so 1000 permutations was sufficient to ensure the p-values were 325 

representative). To assess how the other network measures (density, clustering coefficient, path 326 

length) differed between the two networks (SC and LNNP), we compared the network-level 327 

observed mean values between populations. We did not test these using null models for the 328 
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following reasons: i) SRI and CV permutations are the most effective values to establish if the 329 

observed networks are non-random (Whitehead 2008; Farine & Whitehead 2015); ii) density and 330 

bond strength would have been the same as the null model (Belton et al. 2018); and iii) our 331 

hypotheses focus on the differences between the network structure of the two populations, not 332 

their comparisons to random per se. All analyses were performed on all four networks: whole and 333 

filtered (calves excluded) for each study site. 334 

3  RESULTS 335 

3.1  Patterns of association 336 

The SC and LNNP whole networks are visualised in Figures 2 and 3 respectively. The whole SC 337 

network contained 1861 connected dyads and 695 unconnected dyads; after filtering out calves, 338 

there were 1059 connected and 216 unconnected dyads. The whole LNNP network contained 2405 339 

connected and 1511 unconnected dyads; after filtering out calves, there were 2331 connected and 340 

1155 unconnected dyads. The mean number of associates per individual for each whole network 341 

was 51.7 in SC and 54.0 in LNNP. When calves were removed, this fell to 41.5 in SC and was little 342 

changed, at 55.5, in LNNP. Since there were 50 adults/subadults and 22 calves in SC, and 79 343 

adults/subadults and 5 calves in LNNP, most individuals in each population encountered each other 344 

during the study period. 345 

Both networks were non-random; in all cases (both study sites, whole and filtered networks) the 346 

observed mean SRI and mean CV value were significantly greater than would be expected by chance, 347 

based on corresponding values from the null models (Table 1). 348 

3.2  Network metrics 349 

In both the whole and the filtered networks, density, clustering coefficient and path length were all 350 

higher in SC compared to LNNP (see Table 2). Within networks, all metrics increased when calves 351 

were removed.  352 
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4  DISCUSSION 353 

Association patterns in both populations were significantly different to those that would be 354 

expected by chance, indicating that giraffes showed preferences to associate with and avoid specific 355 

individuals (Whitehead 2008). This supports the results of previous studies suggesting that giraffes 356 

live in social groups with familiar individuals (Bercovitch & Berry 2013a; Carter et al. 2013b), and 357 

suggests that the mechanisms driving individuals to associate with preferred conspecifics are not 358 

completely disrupted by high levels of disturbance by humans and predators.  Currently there is 359 

considerable uncertainty over how giraffes choose to associate with conspecifics; the available 360 

evidence suggests that they group with others based on kinship, age,  individual preferences or 361 

behavioural state (Bercovitch & Berry 2013a, b; Carter et al. 2013a, b; Muller et al. 2018b), and that 362 

shared space use plays a significant role in association patterns (Carter et al. 2013b; VanderWaal et 363 

al. 2014a). Our null models controlled for the spatial and temporal distribution of individuals, 364 

ensuring that the only element randomised was the association patterns between individuals. Since 365 

this removed any obvious factors which might confound our assessment of association choices, such 366 

as shared space use, sampling bias or habitat type, we can say that giraffes show non-random 367 

patterns of association independent of spatial or temporal variables.  368 

Individuals in the area with low disturbance (SC) had stronger and more exclusive bonds (i.e. higher 369 

SRI and CV values) than those in the area exposed to high disturbance (LNNP) (hypothesis i). When 370 

calves were removed from each network, mean SRI increased (SC) or remained stable (LNNP) but 371 

the CV in both networks decreased. This suggests that the presence of calves weakens measures of 372 

bond strength at a network level. It could be that the presence of calves is not important for 373 

maintaining higher and more exclusive bonds at a network level, but this is more likely to reflect 374 

changes in the association patterns of mothers, which then contribute to the overall network means.  375 

Measures of whole network structure generally supported our predictions and indicated that the 376 

network exposed to high disturbance was more fragmented than the network with low disturbance. 377 
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Fewer potential associations between individuals were realised (lower density) under the high 378 

disturbance (hypothesis ii). This indicates that the network is more segmented and individuals 379 

exhibit fewer social interactions between groups. This may be because individuals are forced to 380 

disband due to human- or predator-related disturbance, or that they cannot use the habitat as freely 381 

as those in SC, due to restrictions on space used imposed by human-related development, roads that 382 

are busy with high levels of tourist traffic throughout the area, or through avoiding areas which lions 383 

occupy. The network under high disturbance showed less connectivity (lower clustering coefficient; 384 

hypothesis iii) than the network under low disturbance, which, like density, may indicate the 385 

network is fractured with isolated sections and groups of individuals. We found shorter path length 386 

under high disturbance (hypothesis iv), which could be indicative of the more temporary nature of 387 

connections, as suggested by the low bond strength (edge weights). In LNNP, low path length could 388 

indicate the presence of smaller, more isolated groups which are not as strongly bonded as those in 389 

SC. Networks with small path lengths, all other things being equal, have a quicker spread of disease 390 

and information (Reppas et al. 2012), so perhaps shorter path lengths in areas of high pressure are 391 

beneficial, since information about disturbance or threat can be transmitted more quickly. The lower 392 

mean edge weight for giraffes in LNNP would support the possibility that giraffes are disbanded and 393 

moved between groups in LNNP more often than in SC. 394 

While social networks can confer fitness benefits to individuals, it is not so clear what consequences 395 

arise from the disruption or disturbance of such mechanisms. In humans, poor access to social 396 

networks is associated with ill health and poverty (Belle 1983; Cattell 2001; Adato et al. 2006), but 397 

the effects of poor social integration have not been explicitly tested in other species. Given that,  398 

close bonds of adults and stable social structure have been shown to increase fitness and survival of 399 

offspring in multiple taxa (Silk et al. 2003, 2009; Cameron et al. 2009), it is plausible that the 400 

opposite means fitness reductions and reduced birth rates and survival of offspring. So, the low 401 

cohesion and high fragmentation of the network in LNNP could have fitness implications for that 402 

population. Coincidentally, the giraffe population in LNNP has very few calves (Muller 2018). This 403 
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was attributed to the high predation by lions (Brenneman et al. 2009), an obvious conclusion given 404 

that lion predation of  giraffe calves is known to be high (58% of calves < 1 year in Tanzania are killed 405 

by lions (Pellew 1984; Strauss & Packer 2013), and because LNNP contains a high density of lions 406 

(Ogutu et al. 2012; Muller 2018). But if high predation by lions is the proximate cause of the lack of 407 

calves in the LNNP population, what is the ultimate cause? One hypothesis is that if social networks 408 

offer survival benefits to young, and those social networks are disrupted (potentially by high levels 409 

of disturbance, as demonstrated in hyaenas; Belton et al. 2018), could this disruption result in 410 

reduced survival of young? It is well established that stable social networks facilitate the survival of 411 

the young (Silk et al. 2003, 2009; Cameron et al. 2009; Stanton & Mann 2012; Brent et al. 2015, 412 

2017; Goldenberg et al. 2016; Lahdenperä et al. 2016), so it seems plausible that disruption of those 413 

networks could influence calf survival, and potentially explain the lack of calves in LNNP. There is 414 

evidence of alloparental care in giraffes; young calves are frequently left in a crèche system, cared 415 

for by adults other than their mother (Leuthold 1979; Pratt & Anderson 1979, 1985), there are 416 

several reports of allonursing (Pratt & Anderson 1985; Perry 2011; Gloneková et al. 2016, 2017) and 417 

females express distress behaviours following the death of another individual’s calf (Bercovitch 418 

2012; Strauss & Muller 2013). The presence of social bonds between adults may therefore be 419 

important to facilitate the survival of calves, so the disruption of those bonds across the population 420 

in LNNP may have adversely affected the survival of calves. 421 

An alternative hypothesis is that high lion predation was responsible for the removal of calves, and 422 

the lack of calves contributed to bond disruption in females. Maintenance of a high mean bond 423 

strength before and after filtering calves out of the network suggests that strong bonds exist 424 

between adults, and that mother-calf bonds are not the sole contributor to high mean bond 425 

strength at a network level. Disruption of social structure can have a severe impact on wider 426 

population processes within social species (Manor & Saltz 2003), making it possible that disruption 427 

of the giraffe network in LNNP has negatively affected the survival of calves. Understanding which 428 

comes first is a difficult question to answer: do strong bonds between adults lead to increased calf 429 
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survival, or does the presence of calves facilitate strong bonds between adults? Understanding the 430 

direction of such social processes, how these vary between species, and the implications for the 431 

success of individuals remains a central question in biology. 432 

We also recognise that observed differences in network structure between our two study 433 

populations were due to factors other than levels of disturbance. For example, differences in the 434 

relative availability of conspecifics between the two sites (population demography; Muller 2018) 435 

may have influenced patterns of associations. Likewise, local differences in habitat structure and 436 

forage availability may have been influential but were outside the scope of this study. We highlight 437 

these limitations so that our results can be interpreted in the correct context, and so that future 438 

work can consider these aspects in their study design. We also recognise that studies like this would 439 

be able to draw stronger conclusions if networks structure could be linked to fitness and survival 440 

outcomes, but will require much longer-term data sets than we were able to collect.  441 

5 CONCLUSIONS 442 

We have demonstrated how the social networks and association patterns of the same species can be 443 

very different between populations, despite using the same study design, observer, data collection 444 

methodologies and analytical techniques. Such disparity in network structure between two 445 

populations suggests caution in drawing general conclusions about a species’ behaviour from studies 446 

which focus on a single population. The comparison of networks has provoked some discussion 447 

(Faust & Skvoretz 2002; Faust 2006; Dubé et al. 2008), but we demonstrate its value in 448 

understanding how key environmental variables may influence the natural behaviour of species. We 449 

have demonstrated how the latest techniques in generating null models against which to test our 450 

hypotheses can be used to account for spatial and temporal factors, enabling the identification of 451 

true patterns of social preference. Studies of social behaviour which do not account for 452 

environmental factors in null models must be interpreted with caution, since social processes have 453 

not been isolated from the influence of external variables (Farine 2017).  454 
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As wildlife populations become increasingly restricted to enclosed conservation areas, and wildlife 455 

tourism continues to experience significant growth, it is critical to understand how human activity 456 

and associated disturbance affect the social behaviour of wildlife populations. Further, as wildlife 457 

populations become increasingly enclosed and prey populations are confined to areas containing 458 

high predator density, we need to understand how this may influence social networks, which in turn 459 

might have an impact upon population dynamics and demography. We have provided evidence to 460 

suggest that disturbance by humans and predators may be disruptive to the social networks of 461 

giraffes, and introduce the hypothesis that such disruption is a contributory cause of reduced calf 462 

survival in LNNP. If this hypothesis is true, it raises difficult questions about balancing the need for 463 

species conservation and protection alongside commercial activities which support conservation, 464 

and the conservation of large predators alongside threatened prey species (Bercovitch 2018). We 465 

suggest that further work is needed to understand exactly how disturbance by humans and 466 

predators influences the social behaviour of animals, but more importantly, how subsequent 467 

changes in animal behaviour influence the survival, reproduction and evolution of those species. We 468 

also hope that our findings will serve as a caution to other researchers about the danger of drawing 469 

general conclusions about the social organisation of a species based on single-population studies, 470 

and act as a catalyst to promote wider discussion about the challenges and benefits of comparing 471 

networks.  472 
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TABLE 1 Mean non-zero edge weight (using the simple ratio index, SRI) and coefficient of variation 918 

(CV) values for the observed and random networks for both study sites (Soysambu Conservancy, SC, 919 

and Lake Nakuru National Park, LNNP) including all the network data (‘whole network’) or without 920 

calves (‘filtered network’). Significance was tested at the P < 0.05 level, based on 1000 random 921 

network permutations 922 

 Observed network Random network P value  
SC: whole network 
Mean SRI value       0.125   0.083 <0.001 
Mean CV 116.938 75.373 <0.001 
SC: filtered network  
Mean SRI value    0.126   0.095 <0.001 
Mean CV 95.081 64.118 <0.001 
LNNP: whole network    
Mean SRI value       0.088   0.053 <0.001 
Mean CV 130.369 93.768 <0.001 
LNNP: filtered network     
Mean SRI value       0.088   0.056 <0.001 
Mean CV 121.451 86.444   0.004 

 923 

 924 

 925 

 926 

 927 

 928 
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TABLE 2 Network metrics for both study sites (Soysambu Conservancy, SC, and Lake Nakuru National 930 

Park, LNNP) using network data including (‘whole network’) or without calves (‘filtered network’)  931 

 Density Clustering Coefficient Path Length 
SC: whole network 0.728 0.822 0.243 
SC: filtered network 0.831 0.877 0.362 

LNNP: whole network 0.614 0.757 0.219 
LNNP: filtered network 0.669 0.767 0.243 

 932 

 933 

 934 

 935 

 936 

 937 

 938 
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 940 

FIGURE 1  Location of the study sites in the Great Rift Valley region of Kenya. Reproduced, with 941 

permission, from Muller, et al. 2018. Journal of Zoology 306, 77–87. Base map provided by Google 942 

Maps 2018.  943 
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 945 

FIGURE 2 Visualisation of the whole network in SC. Nodes are coloured by sex: mature bulls = dark 946 

blue; adult males = mid-blue; subadult males = light blue; adult females = dark pink; subadult 947 

females = light pink; calves = yellow. Edges are undirected and weighted by the association index 948 

(Simple Ratio Index); darker lines represent stronger relationships between individuals.  949 
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 951 

FIGURE 3 Visualisation of the whole network in LNNP. Nodes are coloured by sex: mature bulls = 952 

dark blue; adult males = mid-blue; subadult males = light blue; adult females = dark pink; subadult 953 

females = light pink; calves = yellow. Edges are undirected and weighted by the association index 954 

(Simple Ratio Index); darker lines represent stronger relationships between individuals. 955 
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