51 research outputs found

    Functional Polymorphisms in IL13 Are Protective against High Schistosoma mansoni Infection Intensity in a Brazilian Population

    Get PDF
    IL-13 is a signature cytokine of the helper T cell type 2 (TH2) pathway which underlies host defense to helminthic infection and activates production of IgE in both parasitized populations and in urban settings after allergen exposure.Two functional polymorphisms in IL13, rs1800925 (or c.1-1111C>T) and rs20541 (or R130Q) were previously found to be associated with Schistosoma hematobium infection intensity. They have not been thoroughly explored in S. mansoni-endemic populations, however, and were selected along with 5 tagging SNPs for genotyping in 812 individuals in 318 nuclear families from a schistosomiasis-endemic area of Conde, Bahia, in Brazil. Regression models using GEE to account for family membership and family-based quantitative transmission disequilibrium tests (QTDT) were used to evaluate associations with total serum IgE (tIgE) levels and S. mansoni fecal egg counts adjusted for non-genetic covariates. We identified a protective effect for the T allele at rs20541 (P = 0.005) against high S. mansoni egg counts, corroborated by QTDT (P = 0.014). Our findings also suggested evidence for protective effects for the T allele at rs1800925 and A allele at rs2066960 after GEE analysis only (P = 0.050, 0.0002).The two functional variants in IL13 are protective against high S. mansoni egg counts. These markers showed no evidence of association with tIgE levels, unlike tIgE levels previously studied in non-parasitized or atopic study populations

    A New Role for Translation Initiation Factor 2 in Maintaining Genome Integrity

    Get PDF
    Escherichia coli translation initiation factor 2 (IF2) performs the unexpected function of promoting transition from recombination to replication during bacteriophage Mu transposition in vitro, leading to initiation by replication restart proteins. This function has suggested a role of IF2 in engaging cellular restart mechanisms and regulating the maintenance of genome integrity. To examine the potential effect of IF2 on restart mechanisms, we characterized its influence on cellular recovery following DNA damage by methyl methanesulfonate (MMS) and UV damage. Mutations that prevent expression of full-length IF2-1 or truncated IF2-2 and IF2-3 isoforms affected cellular growth or recovery following DNA damage differently, influencing different restart mechanisms. A deletion mutant (del1) expressing only IF2-2/3 was severely sensitive to growth in the presence of DNA-damaging agent MMS. Proficient as wild type in repairing DNA lesions and promoting replication restart upon removal of MMS, this mutant was nevertheless unable to sustain cell growth in the presence of MMS; however, growth in MMS could be partly restored by disruption of sulA, which encodes a cell division inhibitor induced during replication fork arrest. Moreover, such characteristics of del1 MMS sensitivity were shared by restart mutant priA300, which encodes a helicase-deficient restart protein. Epistasis analysis indicated that del1 in combination with priA300 had no further effects on cellular recovery from MMS and UV treatment; however, the del2/3 mutation, which allows expression of only IF2-1, synergistically increased UV sensitivity in combination with priA300. The results indicate that full-length IF2, in a function distinct from truncated forms, influences the engagement or activity of restart functions dependent on PriA helicase, allowing cellular growth when a DNA–damaging agent is present

    Association of the Gene Polymorphisms IFN-γ +874, IL-13 −1055 and IL-4 −590 with Patterns of Reinfection with Schistosoma mansoni

    Get PDF
    Approximately 200 million people have schistosomiasis in parts of Africa, South America, the Middle East, the Caribbean and Asia. Several studies of multiple treatments and reinfections indicate that some people develop resistance to reinfection. Of all the immunologic findings associated with such studies, the most consistent observation is that resistance (usually defined as lower levels of infection upon reinfection) correlates with high IgE and low IgG4 antibodies against schistosome antigens. Our studies test whether single nucleotide polymorphisms residing in the gene or promoter regions of cytokines pivotal in controlling production of these antibody isotypes are different amongst those that develop resistance to reinfection as opposed to those that do not. Through genotyping of these polymorphisms in a cohort of occupationally exposed car washers, we found that men with certain genotypic patterns of polymorphisms in IL-4, IFN-γ, and IL-13 were significantly more likely to be resistant to reinfection than those with different patterns. These data provide initial insights into the potential genetic foundation of propensities of people to develop resistance to reinfection by schistosomes, and offer a basis for further molecular studies of how these polymorphisms might work at the transcriptional and gene product level in cells stimulated by schistosome antigens

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Group A Streptococcus, Acute Rheumatic Fever and Rheumatic Heart Disease: Epidemiology and Clinical Considerations

    Get PDF
    corecore