73 research outputs found

    Pion susceptibility of the QCD vacuum from an effective quark-quark interaction

    Full text link
    A modified method for calculating the pion vacuum susceptibility from an effective quark-quark interaction model is derived. Within this approach it is shown that the pion vacuum susceptibility is free of ultraviolet divergence and is much smaller than the previous estimations.Comment: 13 pages, 2 figure

    Knockdown of zif268 in the posterior dorsolateral striatum does not enduringly disrupt a response memory of a rewarded T-maze task

    Get PDF
    Under certain conditions pavlovian memories undergo reconsolidation, whereby the reactivated memory can be disrupted by manipulations such as knockdown of zif268. For instrumental memories, reconsolidation disruption is less well established. Our previous, preliminary data identified that there was an increase in Zif268 in the posterior dorsolateral striatum (pDLS) after expression of an instrumental habit-like ‘response’ memory, but not an instrumental goal-directed ‘place’ memory on a T-maze task. Here, the requirement for Zif268 in the reconsolidation of a response memory was tested by knockdown of Zif268, using antisense oligodeoxynucleotide infusion into the pDLS, at memory reactivation. Zif268 knockdown reduced response memory expression 72H, but not 7d later. Western blotting revealed a non-significant increase in Zif268 in the pDLS in rats using response memories, but there was no change in Zif268 expression in the hippocampus following retrieval of a place memory. Zif268 expression increased in the basolateral amygdala after memory reactivation whether a response or place strategy was used during reactivation. We propose that Zif268 expression in the basolateral amygdala may be linked to prediction error, generated by the absence of reward at reactivation. Taken together, these results suggest a complex role for Zif268 in the maintenance of instrumental memories.This work was conducted within the Behavioural and Clinical Neuroscience Institute (BCNI), a joint initiative funded by the Wellcome Trust and the UK Medical Research Council, in the Department of Psychology at the University of Cambridge. This work was funded by a UK Medical Research Council programme grant (no. G1002231) awarded to B.J.E. and A.L.M. G.H.V. was supported by a doctoral training grant from the BCNI. A.L.M. is the Ferreras-Willetts Fellow in Neuroscience at Downing College, Cambridge. E.N.C is a BBSRC Anniversary Future Leaders Fellow

    Extremely anisotropic van der Waals thermal conductors

    Get PDF
    The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials1–3. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis4,5. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS2, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the\ua0long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS2 (57 \ub1 3 mW m−1 K−1) and WS2 (41 \ub1 3 mW m−1 K−1) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems

    Radiating Shear-Free Gravitational Collapse with Charge

    Full text link
    We present a new shear free model for the gravitational collapse of a spherically symmetric charged body. We propose a dissipative contraction with radiation emitted outwards. The Einstein field equations, using the junction conditions and an ansatz, are integrated numerically. A check of the energy conditions is also performed. We obtain that the charge delays the black hole formation and it can even halt the collapse.Comment: 22 pages, 9 figures. It has been corrected several typos and included several references. Accepted for publication in GR

    Signs of positive selection of somatic mutations in human cancers detected by EST sequence analysis

    Get PDF
    BACKGROUND: Carcinogenesis typically involves multiple somatic mutations in caretaker (DNA repair) and gatekeeper (tumor suppressors and oncogenes) genes. Analysis of mutation spectra of the tumor suppressor that is most commonly mutated in human cancers, p53, unexpectedly suggested that somatic evolution of the p53 gene during tumorigenesis is dominated by positive selection for gain of function. This conclusion is supported by accumulating experimental evidence of evolution of new functions of p53 in tumors. These findings prompted a genome-wide analysis of possible positive selection during tumor evolution. METHODS: A comprehensive analysis of probable somatic mutations in the sequences of Expressed Sequence Tags (ESTs) from malignant tumors and normal tissues was performed in order to access the prevalence of positive selection in cancer evolution. For each EST, the numbers of synonymous and non-synonymous substitutions were calculated. In order to identify genes with a signature of positive selection in cancers, these numbers were compared to: i) expected numbers and ii) the numbers for the respective genes in the ESTs from normal tissues. RESULTS: We identified 112 genes with a signature of positive selection in cancers, i.e., a significantly elevated ratio of non-synonymous to synonymous substitutions, in tumors as compared to 37 such genes in an approximately equal-sized EST collection from normal tissues. A substantial fraction of the tumor-specific positive-selection candidates have experimentally demonstrated or strongly predicted links to cancer. CONCLUSION: The results of EST analysis should be interpreted with extreme caution given the noise introduced by sequencing errors and undetected polymorphisms. Furthermore, an inherent limitation of EST analysis is that multiple mutations amenable to statistical analysis can be detected only in relatively highly expressed genes. Nevertheless, the present results suggest that positive selection might affect a substantial number of genes during tumorigenic somatic evolution

    A Component of Retinal Light Adaptation Mediated by the Thyroid Hormone Cascade

    Get PDF
    Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2–3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4–8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Nasolacrimal system aeration on computed tomographic imaging: effects of patient positioning&nbsp;and scan orientation

    No full text
    Craig N Czyz,1 Thomas S Bacon,2 Andrew W Stacey,3 Eva N Cahill,4 Bryan R Costin,5 Boris I Karanfilov,6 Kenneth V Cahill5 1Section Oculofacial Plastic and Reconstructive Surgery, Ohio University/OhioHealth, 2Department of Medical Education, Mount Carmel Health Systems, Columbus, OH, USA; 3Department of Ophthalmology, University of Michigan, Ann Arbor, MI, USA; 4Department of Biology, Wittenberg University, Springfield, OH, USA; 5Department of Ophthalmology, William H Havener Eye Institute, Ohio State University Wexner Medical Center, Columbus, OH, USA; 6The Sinus Institute of Ohio, Dublin, OH, USA Purpose: To determine the impact of patient positioning and scan orientation on the appearance of air in the nasolacrimal drainage system on computed tomography (CT) imaging, and the repeatability of the observations.Methods: This was a retrospective analysis of CT images for 92 patients.Results: Air was found to be present more fully in the upright-position group as compared with the supine-position group. Comparing axial and coronal scan orientation, no difference in aeration was found, except for the nasolacrimal duct in the upright-position group.Conclusion: Patient position should be accounted for in diagnostic conclusions and treatment decisions based on CT. Keywords: axial, coronal, nasolacrimal sac, nasolacrimal duc
    corecore