15 research outputs found

    ATM variants and cancer risk in breast cancer patients from Southern Finland

    Get PDF
    BACKGROUND: Individuals heterozygous for germline ATM mutations have been reported to have an increased risk for breast cancer but the role for ATM genetic variants for breast cancer risk has remained unclear. Recently, a common ATM variant, ATMivs38 -8T>C in cis with the ATMex39 5557G>A (D1853N) variant, was suggested to associate with bilateral breast cancer among familial breast cancer patients from Northern Finland. We have here evaluated the 5557G>A and ivs38-8T>C variants in an extensive case-control association analysis. We also aimed to investigate whether there are other ATM mutations or variants contributing to breast cancer risk in our population. METHODS: Two common ATM variants, 5557G>A and ivs38-8T>C, previously suggested to associate with bilateral breast cancer, were genotyped in an extensive set of 786 familial and 884 unselected breast cancer cases as well as 708 healthy controls. We also screened the entire coding region and exon-intron boundaries of the ATM gene in 47 familial breast cancer patients and constructed haplotypes of the patients. The identified variants were also evaluated for increased breast cancer risk among additional breast cancer cases and controls. RESULTS: Neither of the two common variants, 5557G>A and ivs38-8T>C, nor any haplotype containing them, was significantly associated with breast cancer risk, bilateral breast cancer or multiple primary cancers in any of the patient groups or subgoups. Three rare missense alterations and one intronic change were each found in only one patient of over 250 familial patients studied and not among controls. The fourth missense alteration studied further was found with closely similar frequencies in over 600 familial cases and controls. CONCLUSION: Altogether, our results suggest very minor effect, if any, of ATM genetic variants on familial breast cancer in Southern Finland. Our results do not support association of the 5557G>A or ivs38-8T>C variant with increased breast cancer risk or with bilateral breast cancer

    Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families

    Get PDF
    BACKGROUND: Ataxia telangiectasia-mutated and Rad3-related (ATR) is a member of the PIK-related family which plays, along with ATM, a central role in cell-cycle regulation. ATR has been shown to phosphorylate several tumor suppressors like BRCA1, CHEK1 and TP53. ATR appears as a good candidate breast cancer susceptibility gene and the current study was designed to screen for ATR germline mutations potentially involved in breast cancer predisposition. METHODS: ATR direct sequencing was performed using a fluorescent method while widely available programs were used for linkage disequilibrium (LD), haplotype analyses, and tagging SNP (tSNP) identification. Expression analyses were carried out using real-time PCR. RESULTS: The complete sequence of all exons and flanking intronic sequences were analyzed in DNA samples from 54 individuals affected with breast cancer from non-BRCA1/2 high-risk French Canadian breast/ovarian families. Although no germline mutation has been identified in the coding region, we identified 41 sequence variants, including 16 coding variants, 3 of which are not reported in public databases. SNP haplotypes were established and tSNPs were identified in 73 healthy unrelated French Canadians, providing a valuable tool for further association studies involving the ATR gene, using large cohorts. Our analyses led to the identification of two novel alternative splice transcripts. In contrast to the transcript generated by an alternative splicing site in the intron 41, the one resulting from a deletion of 121 nucleotides in exon 33 is widely expressed, at significant but relatively low levels, in both normal and tumoral cells including normal breast and ovarian tissue. CONCLUSION: Although no deleterious mutations were identified in the ATR gene, the current study provides an haplotype analysis of the ATR gene polymorphisms, which allowed the identification of a set of SNPs that could be used as tSNPs for large-scale association studies. In addition, our study led to the characterization of a novel Δ33 splice form, which could generate a putative truncated protein lacking several functional domains. Additional studies in large cohorts and other populations will be needed to further evaluate if common and/or rare ATR sequence variants can be associated with a modest or intermediate breast cancer risk

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Genetic variation at CYP3A is associated with age at menarche and breast cancer risk : a case-control study

    Get PDF
    Abstract Introduction We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age ≤50 years. Methods We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics. Results We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P trend = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P trend = 0.005) but not cases (P trend = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P het = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age ≥15 years (ORhet = 0.84, 95% CI 0.75, 0.94; ORhom = 0.81, 95% CI 0.51, 1.30; P trend = 0.002) but not for those who had their menarche age ≤11 years (ORhet = 1.06, 95% CI 0.95, 1.19, ORhom = 1.07, 95% CI 0.67, 1.72; P trend = 0.29). Conclusions To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels

    Litigation Strategies for Sexual Violence in Africa

    No full text

    Hormone-related pathways and risk of breast cancer subtypes in African American women

    No full text
    PURPOSE: We sought to investigate genetic variation in hormone pathways in relation to risk of overall and subtype-specific breast cancer in women of African ancestry (AA). METHODS: Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related genes for 3663 breast cancer cases (1098 ER-, 1983 ER+, 582 ER unknown) and 4687 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, the Women's Circle of Health Study, the Black Women's Health Study, and the Multiethnic Cohort Study. Pathway- and gene-based analyses were conducted, and single SNP tests were run for the top genes. RESULTS: There were no strong associations at the pathway level. The most significantly associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based nominal p ≤0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p ≤0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER- disease (p ≤0.02). Single-SNP tests for SNPs with pairwise linkage disequilibrium r(2) <0.8 in the top genes identified 12 common SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated with overall or subtype-specific breast cancer after gene-level correction for multiple testing. Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER- disease. CONCLUSION: We identified eight genes in hormone pathways that contain common variants associated with breast cancer in AA women after gene-level correction for multiple testing

    Genetic variation in estrogen and progesterone pathway genes and breast cancer risk: an exploration of tumor subtype-specific effects

    No full text
    PURPOSE: To determine whether associations between estrogen pathway-related single nucleotide polymorphisms (SNPs) and breast cancer risk differ by molecular subtype, we evaluated associations between SNPs in cytochrome P450 family 19 subfamily A polypeptide 1 (CYP19A1), estrogen receptor (ESR1), 3-beta hydroxysteroid dehydrogenase type I (HSD3B1), 17-beta hydroxysteroid dehydrogenase type II (HSD17B2), progesterone receptor (PGR), and sex hormone-binding globulin (SHBG) and breast cancer risk in a case-control study in North Carolina. METHODS: Cases (N=1,972) were women 20–74 years old and diagnosed with breast cancer between 1993 and 2001. Population-based controls (N=1,776) were frequency-matched to cases by age and race. 195 SNPs were genotyped and linkage disequilibrium was evaluated using the r(2) statistic. Odds ratios (ORs) and 95% confidence intervals (CIs) for associations with breast cancer overall and by molecular subtype were estimated using logistic regression. Monte Carlo methods were used to control for multiple comparisons; two-sided P values <3.3 × 10(−4) were statistically significant. Heterogeneity tests comparing the two most common subtypes, luminal A (N=679) and basal-like (N=200), were based on the Wald statistic. RESULTS: ESR1 rs6914211 (AA vs. AT+TT, OR=2.24, CI: 1.51, 3.33), ESR1 rs985191 (CC vs. AA, OR=2.11, CI: 1.43, 3.13), and PGR rs1824128 (TT+GT vs. GG, OR=1.33, CI: 1.14, 1.55) were associated with risk after accounting for multiple comparisons. Rs6914211 and rs985191 were in strong linkage disequilibrium among controls (African Americans r(2)=0.70; whites r(2)=0.95). There was no evidence of heterogeneity between luminal A and basal-like subtypes, and the three SNPs were also associated with elevated risk of the less common luminal B, HER2+/ER− and unclassified subtypes. CONCLUSIONS: ESR1 and PGR SNPs were associated with risk, but lack of heterogeneity between subtypes suggests variants in hormone-related genes may play similar roles in the etiology of breast cancer molecular subtypes
    corecore