83 research outputs found
The landscape of somatic copy-number alteration across human cancers
available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κΒ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833
Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk
Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10-12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10-10 and 2.21 × 10-6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.This work was supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014 and SysInflame, grant 01ZX1306A), and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the DFG as part of the Sonderforschungsbereich CRC 1123 (B2). T.K. was supported by a DZHK Rotation Grant. I.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence ‘Inflammation at Interfaces’. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001 - Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre
Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies
First published: 16 February 202
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1
Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
- …