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OBJECTIVE—Proinsulin is a precursor of mature insulin and
C-peptide. Higher circulating proinsulin levels are associated with
impaired b-cell function, raised glucose levels, insulin resistance,
and type 2 diabetes (T2D). Studies of the insulin processing path-
way could provide new insights about T2D pathophysiology.

RESEARCH DESIGN AND METHODS—We have conducted
a meta-analysis of genome-wide association tests of ;2.5 million
genotyped or imputed single nucleotide polymorphisms (SNPs)
and fasting proinsulin levels in 10,701 nondiabetic adults of Euro-
pean ancestry, with follow-up of 23 loci in up to 16,378 individuals,
using additive genetic models adjusted for age, sex, fasting in-
sulin, and study-specific covariates.

RESULTS—Nine SNPs at eight loci were associated with pro-
insulin levels (P, 53 1028). Two loci (LARP6 and SGSM2) have
not been previously related to metabolic traits, one (MADD) has
been associated with fasting glucose, one (PCSK1) has been im-
plicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/
C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk.
The proinsulin-raising allele of ARAP1 was associated with a
lower fasting glucose (P = 1.7 3 1024), improved b-cell function
(P = 1.1 3 1025), and lower risk of T2D (odds ratio 0.88; P = 7.83
1026). Notably, PCSK1 encodes the protein prohormone convertase
1/3, the first enzyme in the insulin processing pathway. A genotype
score composed of the nine proinsulin-raising alleles was not
associated with coronary disease in two large case-control
datasets.

CONCLUSIONS—We have identified nine genetic variants asso-
ciated with fasting proinsulin. Our findings illuminate the biology
underlying glucose homeostasis and T2D development in humans
and argue against a direct role of proinsulin in coronary artery
disease pathogenesis. Diabetes 60:2624–2634, 2011

G
enome-wide association studies (GWAS) have
uncovered dozens of common genetic variants
associated with risk for type 2 diabetes (T2D;
reviewed in [1]). Known associated variants in

these loci account for only a small proportion of the heri-
table component of T2D (1), suggesting that additional loci
await discovery. The Meta-Analyses of Glucose and In-
sulin-related traits Consortium (MAGIC) was created un-
der the premise that genome-wide analysis of continuous
diabetes-related traits could not only identify loci regu-
lating variation in these glycemic traits, but also yield
additional T2D susceptibility loci and insights into the
underlying physiology of these loci (2–5). In addition, the
genetic study of T2D endophenotypes may help clarify
the pathophysiologic heterogeneity of this disease by
elucidating the respective roles of b-cell function, insulin

secretion, processing and sensitivity, and glucose metabo-
lism (6).

Discovery of novel genetic determinants of insulin se-
cretion and action has primarily focused on insulin levels
(3,4,7,8). Proinsulin is the molecular precursor for insulin
and has relatively low insulin-like activity, and its enzy-
matic conversion into mature insulin and C-peptide is
a critical step in insulin production and secretion (Sup-
plementary Fig. 1). Although hyperinsulinemia typically
denotes insulin resistance, high proinsulin in relation to
circulating levels of mature insulin can indicate b-cell
stress as a result of insulin resistance, impaired b-cell
function, and/or insulin processing and secretion abnor-
malities (9) (Supplementary Fig. 2). There is good evi-
dence that higher proinsulin predicts future T2D (10) and
coronary artery disease (CAD) (11–13), even after taking
fasting glucose levels into account. Interestingly, some loci
previously associated with fasting glucose levels (MADD)
or risk of T2D (TCF7L2, SLC30A8, CDKAL1) are also
associated with higher circulating proinsulin (6,14–17).
Therefore, genome-wide analysis of proinsulin levels could
reveal additional novel loci increasing susceptibility for
T2D and perhaps CAD.

Thus, to identify novel loci influencing proinsulin pro-
cessing and secretion and potentially increasing suscepti-
bility for T2D, we performed a meta-analysis of ;2.5
million directly genotyped or imputed autosomal single
nucleotide polymorphisms (SNPs) from four GWAS of
fasting proinsulin levels (adjusted for concomitant fasting
insulin) including 10,701 nondiabetic adult men and
women of European descent. Follow-up of 23 lead SNPs
from the most significant association signals in up to
16,378 additional individuals of European ancestry detected
nine genome-wide significant associations with proinsulin
levels, including two novel signals in or near LARP6 and
SGSM2, and the known glycemic loci ARAP1, MADD
(two independent signals), TCF7L2, VPS13C/C2CD4A/B,
SLC30A8, and PCSK1. Here we describe these genetic
associations, perform fine-mapping to identify potential
causal variants, assess gene expression in human tissues,
and define their impact on other glycemic quantitative
traits and risk of both T2D and CAD.

RESEARCH DESIGN AND METHODS

Cohort/study description. Four cohorts contributed to the discovery meta-
analysis through the contribution of phenotypic and GWAS data. These in-
cluded the Framingham Heart Study (n = 5,759), Precocious Coronary Artery
Disease (PROCARDIS) (n = 3,259), the Fenland study (n = 1,372), and the
Diabetes Genetics Initiative (DGI) (n = 311), for a total of 10,701 participants.
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Eleven cohorts contributed to the follow-up efforts; these included Metabolic
Syndrome in Men (METSIM) (n = 5,122), Botnia Prevalence, Prediction and
Prevention of diabetes (Botnia-PPP) (n = 2,280), Helsinki Birth Cohort Study
(HBCS) (n = 1,649), the Ely study (n = 1,568), the Hertfordshire study (n =
1,016), Uppsala Longitudinal Study of Adult Men (ULSAM) (n = 939), Re-
lationship between Insulin Sensitivity and Cardiovascular disease (RISC) (n =
914), Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS)
(n = 912), Segovia (n = 911), the Greek Health Randomized Aging Study
(GHRAS) (n = 668), and Stockholm Diabetes Prevention Program (SDPP) (n =
399), for a total of 16,378 participants (with maximal sample for any one SNP
of 15,898). We excluded individuals with known diabetes, on antidiabetic
treatment, or with fasting glucose $7 mmol/L (3); all participants were of
European descent.
Proinsulin and insulin measurements. Proinsulin (pmol/L) was measured
from fasting whole blood, plasma, or serum or a combination of these using
enzyme-linked immunosorbent or immunometric assays. Fasting insulin
(pmol/L) was measured using either enzyme-linked immunosorbent, immu-
nofluorescent, or radioimmunometric assays (Supplementary Table 1).
Genotyping. Genome-wide commercial arrays (Affymetrix 500K, MIPS 50K,
and Illumina Human1M/610K) were used by the four discovery cohorts as
described in Supplementary Table 1. Imputation and quality control methods
are described in the Supplementary Data.
Statistical analyses. We aimed to identify genetic variants associated with
high proinsulin levels relative to an individual’s fasting insulin levels. This can
be done by examining proinsulin-to-insulin ratios or by statistically adjusting
proinsulin for fasting insulin. We chose the latter because the adjusted trait
has comparable predictive value (18) and displayed better statistical perfor-
mance in pilot studies and adequate heritability in the Framingham Heart
Study, one of the larger cohorts examined here (h2 = 0.36 vs. 0.34 for the
proinsulin-to-insulin ratio). In Framingham, correlation between the adjusted

trait and the ratio was 0.95, and the quantile-quantile GWAS plots were com-
parable.

We used a linear regression model with natural log transformed fasting
proinsulin as the dependent variable and genotypes as predictors, with ad-
justment for natural-log transformed fasting insulin values, sex, age, geo-
graphical covariates (if applicable), and age squared (Framingham only) to
evaluate the association under an additive genetic model. Association analysis
was performed by individual studies using SNPTEST (19), STATA (20), PLINK
(21), or LMEKIN (R kinship package) software (22). Genome-wide association
inflation coefficients were estimated for each discovery cohort using the ge-
nomic control (GC) method (23) and applied subsequently to each individual
SNP association test statistics to correct for cryptic relatedness. The l GC
value for the final meta-analysis of proinsulin adjusted for fasting insulin was
1.01. The inverse-variance fixed effects meta-analysis method was used to
evaluate the pooled regression estimates for additively coded SNPs using
METAL (24). Sex interaction effects were evaluated with a function in the
GWAMA software (25).
Follow-up SNP selection and analysis. We carried forward to stage 2 the
most significant SNP from each of 21 independent loci that showed association
with proinsulin in stage 1 analyses at P , 1 3 1025. Additionally, two SNPs
near the P , 1 3 1025 threshold (in ASAP2 and a gene desert region) were
carried forward as a result of biological plausibility (ASAP2 is involved in
vesicular transport) and/or consistency of direction of effect in all discovery
stage 1 studies (both loci). We genotyped these 23 variants in 11 additional stage
2 studies totaling 16,378 nondiabetic participants of European ancestry (Sup-
plementary Table 1; genotyping assays and conditions are available upon re-
quest). We meta-analyzed stage 1 and stage 2 results using inverse-variance
weighted fixed effects meta-analysis methods, including up to 27,079 participants.

Additional analyses and expression and expression quantitative trait loci
(eQTL) studies are described in the Supplementary Data.

FIG. 1. Manhattan plot of the association P values for fasting proinsulin adjusted for fasting insulin. Directly genotyped and imputed SNPs are
plotted with their meta-analysis P values (as 2log10 values) as a function of genomic position (NCBI Build 36). The SNPs that achieved genome-
wide significance (P < 5 3 10

28
) on follow-up are shown in red. Insert: Quantile-quantile (Q-Q) plot for fasting proinsulin adjusted for fasting

insulin. The expected null distribution is plotted along the diagonal, the entire distribution of observed P values is plotted in blue, and a distri-
bution that excludes the nine novel findings is plotted in red.

GENOME-WIDE ASSOCIATION STUDY OF PROINSULIN

2626 DIABETES, VOL. 60, OCTOBER 2011 diabetes.diabetesjournals.org

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-0415/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-0415/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-0415/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-0415/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-0415/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db11-0415/-/DC1


RESULTS

Genome-wide association meta-analysis (stage 1). We
conducted a two-stage association study in individuals of
European descent (total n = 27,079, with n = 10,701 in the
discovery stage). Cohort and phenotype information can
be found in Supplementary Table 1, and the study design is
outlined in Supplementary Fig. 3. A total of 21 independent
variants (including two SNPs identified during conditional
analyses, see below) met our statistical threshold for follow-
up (P , 1 3 1025; Fig. 1). The clean dataset showed no
systematic deviation from the null expectation, with the
exception of the tail of the distribution (Fig. 1, insert).
Follow-up studies (stage 2) and global (stage 1 +
stage 2) meta-analysis for 23 loci. We followed up 23
SNPs (the 21 mentioned above plus 2 others that
approached our significance threshold and were selected
as a result of biological plausibility; see RESEARCH DESIGN AND

METHODS) in 11 cohorts totaling up to 16,378 nondiabetic
individuals of European descent (Table 1 and Supple-
mentary Table 2). Joint meta-analysis of discovery and
follow-up cohorts (n = 27,079) revealed nine signals at
eight loci reaching genome-wide significance (P, 53 1028),
of which two are novel (SGSM2, LARP6), five have pre-
viously been associated with glucose metabolism and/or
T2D (TCF7L2, SLC30A8, MADD, VPS13C/C2CD4A/B,
and ARAP1), and one (PCSK1) has been previously im-
plicated in obesity and associated with proinsulin levels,
although not at genome-wide significance (Table 1 and
Fig. 2). Adjusting for BMI, fasting glucose, or both did not
attenuate these signals. Of note, when adjusting for fast-
ing glucose or both fasting glucose and BMI (but not BMI
alone), one other locus, SNX7, reached genome-wide
significance (P = 5.4 3 1029 and 1.53 1028, respectively).

Conditional analyses on the two strongest signals re-
vealed that the MADD locus harbors two independent
signals 19 kb apart (rs10501320 and rs10838687; r2 = 0.068 in
HapMap CEU), whereas a second independent signal near
ARAP1 did not replicate (Fig. 2B, Table 1, and Supple-
mentary Table 2). Among the nine replicated SNPs, in-
dividual loci explained between 0.2 and 1.4% of the variance
in proinsulin in the discovery samples and up to 2.3% of
the variance in the follow-up samples. Together, the nine
genome-wide significant SNPs explained between 5.4 and
7.7% of the proinsulin variance in the discovery samples
and 8.1% of the variance in the RISC cohort, one of the
few follow-up cohorts with genotypes available for all
nine SNPs.
Heterogeneity and sex-stratified analyses. We noted
some degree of heterogeneity in our joint meta-analyses
(Table 1). Part of the heterogeneity arose from the METSIM
sample, which enrolled only men; exclusion of this cohort
from our meta-analysis reduced the heterogeneity. We also
stratified our analyses by sex and tested for a SNP 3 sex
interaction (26). Our overall findings remained essentially
unchanged after sex stratification, and heterogeneity was
attenuated (e.g., I2 = 77.2%, heterogeneity P = 1.9 3 1027

for combined men and women, whereas I
2 = 64.6%, het-

erogeneity P = 4.5 3 1024 [men] and I
2 = 55.6%, heteroge-

neity P = 0.01 [women] in stratified analyses). Furthermore,
tests for interaction with sex among SNPs that reached
our follow-up significance threshold revealed a locus
(rs306549 in DDX31) where a genome-wide significant
association was seen in women (P = 2.0 3 1028; Sup-
plementary Fig. 4A) but not men (P = 0.17; Supplementary
Fig. 4B; sex interaction P = 8.9 3 1025). Although removal
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of the METSIM cohort improved the heterogeneity score
and produced nominal significance for the association in
men (P = 0.02), the effect size remained threefold stronger
in women than in men (b-coefficient 0.0427 vs. 0.0165,
respectively).

To provide further reassurance regarding any residual
heterogeneity, we repeated our meta-analyses based on
P values (rather than b-coefficients) and meta-analyzed
the resulting z scores. Our findings were essentially un-
changed, suggesting that heterogeneity in the b-estimates
across cohorts has not produced spurious results.
Exploration of proinsulin processing mechanisms.
Proinsulin is initially cleaved to 32,33-split proinsulin and
further to insulin and C-peptide before secretion (Supple-
mentary Fig. 1); we were therefore interested in the effects
of the nine top SNPs on these traits. The proinsulin-raising
alleles of each SNP were consistently associated with
higher 32,33-split proinsulin levels, with effect sizes fol-
lowing the rank order of proinsulin effect sizes. Nearly all
associations reached nominal conventional levels of sta-
tistical significance in this smaller dataset of 4,103–6,343
individuals with measures of 32,33-split proinsulin levels
(all P , 1.5 3 1023, with the exception of the conditional
signal at MADD). The insulinogenic index (27), which
measures dynamic insulin secretion during the first 30
min after an oral glucose load and was available in 14,956
subjects, showed nominal associations for four loci. Of
these, the proinsulin-raising alleles were associated with a
lower insulinogenic index at VPS13C/C2CD4A/B, TCF7L2,
and SLC30A8 and higher at ARAP1 (Table 2).

We detected no nominal associations with fasting
C-peptide (P . 0.05). Given the differences in hepatic
clearance of insulin and C-peptide, we also performed sen-
sitivity analyses to account for any possible impact this may
have had on our results. We adjusted proinsulin levels for
fasting C-peptide rather than fasting insulin in two cohorts
(Ely and Botnia-PPP); comparison of b-estimates showed
that the majority of loci had very similar effect sizes and the
same rank order was preserved, arguing against noticeable
discrepancies between the two adjustment schemes.
Association with other glycemic traits. To clarify po-
tential mechanisms, the top nine signals (ARAP1, two at
MADD, PCSK1, TCF7L2, VPS13C/C2CD4A/B, SLC30A8,
LARP6, and SGSM2) were also examined in relation to
other glucometabolic traits (fasting and 2-h postload glu-
cose and insulin, homeostasis model assessment estimates
of b-cell function [HOMA-B] and insulin resistance
[HOMA-IR] [28], glycated hemoglobin [A1C], T2D, and BMI
[Table 3]). We investigated results available from MAGIC
meta-analyses of GWAS of glycemic traits (3–5) and ob-
tained T2D and BMI results in collaboration with the Di-
abetes Genetics Replication And Meta-analysis (DIAGRAM)
(29) and Genomewide Investigation of Anthropometric
measures (GIANT) (30) consortia, respectively. Nominal
associations (P , 0.05) were found for fasting glucose
(with the proinsulin-raising allele increasing fasting glucose
levels at MADD, SLC30A8, TCF7L2, and VPS13C/C2CD4A/
B and decreasing fasting glucose levels at ARAP1 and
PCSK1), fasting insulin (increased levels at ARAP1, LARP6,
and SGSM2 and decreased levels at TCF7L2), HOMA-B
(decreased at MADD, SLC30A8, VPS13C/C2CD4A/B, and
TCF7L2 and increased at PCSK1, ARAP1, and LARP6),
insulin resistance as measured by HOMA-IR (increased at
LARP6 and SGSM2 and decreased at TCF7L2), and 2-h
postload glucose (decreased at SLC30A8 and VPS13C/
C2CD4A/B and increased at ARAP1 and TCF7L2).

We detected no significant associations for 2-h postload
insulin or insulin sensitivity as estimated by the Matsuda
index (31) (Table 3).

Associations with T2D were confirmed for four known
T2D loci (SLC30A8, ARAP1, VPS13C/C2CD4A/B, and
TCF7L2; Table 3). Counterintuitively, the proinsulin-
raising allele of ARAP1 (formerly known as CENTD2 and
reported as such in DIAGRAM+) (29) was associated with
a lower fasting glucose (0.019 mg/dL per A allele; P = 1.7 3
1024), lower A1C (0.023%; P = 0.02), and a lower risk of
T2D (odds ratio [OR] 0.88; P = 7.8 3 1026; Table 3).
The two novel loci (LARP6 and SGSM2) did not show
significant associations with T2D (OR [95% CI]: 1.01
[0.95–1.07] and 1.01 [0.96–1.08], respectively), indicating
that if they increase T2D risk they do so to an extent
confined within the bounds of narrow 95% CI.
Fine-mapping, copy number variants, and tissue
expression. We used MACH (32) or IMPUTE (19) ap-
plied to the 1000 Genomes CEU reference panel (www.
1000genomes.org) to carry out imputation of ;8 million
autosomal SNPs with minor allele frequency.1%. Analysis
of 1000 Genomes-imputed data in the four discovery
cohorts indicates that although there are low-frequency
(1–5%) genetic variants that influence levels of circulating
proinsulin, these are found in the same loci that contain
common proinsulin-influencing variants, and none of them
yield substantially stronger signals than the index SNP at
each locus (Supplementary Fig. 5).

Using current databases of copy number variants (33)
and the SNAP software (http://www.broadinstitute.org/
mpg/snap/index.php; CEU, HapMap release 22), we checked
whether any of the proinsulin-associated SNPs were within
500 kb and in linkage disequilibrium (LD) with any of the
SNPs known to tag copy number variants in the human
genome. No copy number variant tag SNPs with r

2 .0.3
were found within 500 kb of our lead SNPs.

To guide identification of the gene responsible for each
association signal, we also examined the gene expression
profile of selected genes in each associated region across a
range of human tissues, including islets and fluorescence-
activated cell (FAC)-sorted b-cells (Fig. 3A–F and Sup-
plementary Fig. 6). We defined 1-Mb intervals around the
lead SNP at each locus and prioritized biologically plausible
genes as gleaned from the literature (see Box in Supple-
mentary Data). We were able to demonstrate b-cell ex-
pression of most genes examined (Fig. 3F). However, at
the LARP6 locus, CT62 is expressed exclusively in testis,
likely excluding it as a relevant gene in this context. At
the ARAP1 locus, STARD10 is expressed more strongly in
pancreatic and islet tissue than any other tissue type; sim-
ilarly, at the VPS13C locus both C2CD4A and C2CD4B
demonstrate higher expression in pancreas and islets than
all other tissue types.

We also studied the expression of the transcript for the
gene closest to the index SNP at each of the nine replicated
loci in human islets isolated from 55 nondiabetic and 9 di-
abetic individuals. Of the nine loci, PCSK1 (P = 0.02) and
MADD (P = 0.07) demonstrated 35–45% lower expression
in subjects with T2D compared with control subjects.
Functional exploration. We evaluated whether any of
the associated SNPs was in strong LD with a potentially
causal variant. We used SNPper (34) to classify all SNPs
in strong LD with the lead SNP (r2 $0.8) within a 1-MB
region. We found that PCSK1 rs6235 codes for a non-
synonymous variant (S690T), which is in perfect LD with
rs6234, another missense variant (Q665E); both were
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FIG. 2. Regional plots of eight genomic regions containing novel genome-wide significant associations. For each region, directly genotyped and
imputed SNPs are plotted with their meta-analysis P values (as 2log10 values) as a function of genomic position (NCBI Build 36). In each panel,
the stage 1 discovery SNP taken forward to stage 2 follow-up is represented by a purple diamond (with global meta-analysis P value), with its stage
1 discovery P value denoted by a red diamond with bolded borders. Estimated recombination rates (taken from HapMap) are plotted to reflect the
local LD structure around the associated SNPs and their correlated proxies (according to a white to red scale from r2 = 0 to 1, based on pairwise r2

values from HapMap CEU). Gene annotations were taken from the University of California Santa Cruz genome browser. A: ARAP1 region;
B: MADD region; C: PCSK1 region; D: TCF7L2 region; E: VPS13C/C2CD4A/B region; F: SLC30A8 region; G: LARP6 region; H: SGSM2 region.
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predicted to be nondamaging by Polyphen (35) and SIFT
(36). At SLC30A8, the proinsulin-associated SNP rs11558471
is a perfect proxy for the known T2D-associated SNP
rs13266634, encoding R325W. The T allele (encoding tryp-
tophan) is predicted to be benign by PolyPhen, but damaging
by SIFT. We found no other strong (r2 .0.8) correlations in
HapMap CEU with potentially functional SNPs within 1 Mb
of the lead signals.

We also tested whether any of the proinsulin-associated
SNPs might influence proximal (cis) expression of human
transcripts, in tissues available to us that had been paired
to genetic data. We found a significant association (P =
0.01 permutation threshold) of rs1549318 with expression
levels of LARP6 in adipose tissue. SNP rs1549318 is lo-
cated ;37 kb from LARP6, and the proinsulin-raising T
allele is associated with lower levels of expression. Anal-
ysis of an eQTL database from human liver indicated that
the proinsulin-raising A allele of the lead SNP at the
SGSM2 locus (rs179456) was associated with increased
liver expression of TRPS1 (P = 0.004).
CAD. We constructed unweighted and weighted genotype
scores composed of the nine genome-wide significant
proinsulin-raising alleles, with weights defined by the
b-coefficients from our replication meta-analysis, and
tested the association of these scores with CAD in the
Coronary Artery Disease Genome-wide Replication And
Meta-Analysis (CARDIoGRAM) (37) (n = ;22,000 CAD
case subjects and 60,000 control subjects) and C4D (38)
(n = 15,420 CAD case subjects and 15,062 control subjects)
datasets. Neither weighted nor unweighted genotype scores
reached nominal significance in either dataset (P = 0.47 and
0.81 for unweighted and weighted scores in CARDIoGRAM,
respectively; P = 0.60 and 0.43 for unweighted and weighted
scores in C4D, respectively).

DISCUSSION

We report the first meta-analysis of genome-wide associa-
tion datasets for circulating fasting proinsulin. We adjusted
proinsulin for fasting insulin levels, aiming to capture an
increase in proinsulin relative to the nonspecific activation
of the insulin processing pathway induced by generalized
insulin resistance (Supplementary Fig. 2). Loci that simply
influence insulin resistance are typically sought by a GWAS
for fasting insulin or more sophisticated measures of insulin
sensitivity (3,4,6). Thus, we hoped to identify loci that in-
dicate the inability of the b-cell to process proinsulin ade-
quately in response to metabolic demands.

We have identified nine signals at eight loci associated
with higher proinsulin levels (see Box in Supplementary
Data). Two of these loci (LARP6 and SGSM2) have not been
previously related to metabolic traits. A 10th signal emerged
after sex-stratified analyses; an explanation for the female-
specific genome-wide significant association at DDX31
requires fine-mapping to identify the causal gene. Although
the function of the DDX31 gene product is unknown, other
members of the DEAD-box protein family have been im-
plicated in sex-specific processes such as spermatogenesis
(39). We have also replicated at the genome-wide level
previously reported nominal associations of MADD,
TCF7L2, VPS13C/C2CD4A/B, SLC30A8, and PCSK1 with
proinsulin (6,14–17,40). The knowledge that TCF7L2,
SLC30A8, VPS13C/C2CD4A/B, and ARAP1 are established
T2D loci provides reassurance that a quest for genetic
determinants of proinsulin can serve to identify disease-
associated signals. Interestingly, the proinsulin-raisingT
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alleles at TCF7L2, SLC30A8, and VPS13C/C2CD4A/B
cause impairment of b-cell function, as estimated by HOMA-B
and the insulinogenic index. By raising proinsulin but
lowering insulin secretion, these loci point to defects in
the insulin processing and secretion pathway, distal to
the first enzymatic step. Such a hypothesis is consistent
with postulated modes of action for TCF7L2 (41) and
SLC30A8 (42); VPS13C, by influencing protein trafficking
across membrane compartments, could also affect the
same process. Further fine-mapping and functional experi-
ments will be required to establish the precise mechanism at
this locus.

ARAP1, which harbors the strongest proinsulin associa-
tion, provides an intriguing counterpoint. Under its previous
designation of CENTD2 it was recently associated with T2D
(29); however, the T2D-associated allele is associated with
lower proinsulin levels, as well as lower b-cell function
(HOMA-B and insulinogenic index). This suggests that the
genetic defect that gives rise to T2D at this locus causes
a generalized downregulation of insulin secretion (e.g.,
through a reduction in b-cell mass/function or very early
defects in insulin processing) and stands in contrast with
TCF7L2, SLC30A8, and VPS13C/C2CD4A/B. A corollary of
the divergent effect of these loci on T2D is that both dis-
proportionate elevations and reductions in proinsulin can
indicate b-cell dysfunction. Of the genes that lie within 1 Mb
of the ARAP1 association signal, we have demonstrated
islet expression in the four strong biological candidates we
examined (ARAP1, INPPL1, STARD10, and RAB6A); how-
ever, expression of STARD10 was much higher in pancreas
than in any other human tissue, and of all genes tested at the
ARAP1 locus STARD10 was expressed most strongly in
islets, indicating that the role of its protein product in the
transfer of phospholipids to membranes may be particularly
relevant to this cell type.

LARP6 is a ribonucleoprotein identified in the current
study as a novel locus associated with increased fasting
proinsulin levels. It is involved in the regulation of trans-
lation and subcellular localization of collagen I, in a manner
dependent upon both the RNA-binding and La domains
(43). The associated SNP rs1549318 is located within
a region of high LD, which spans the gene and includes
a number of SNPs within the RNA-binding domain. Al-
though the link between LARP6 and proinsulin levels is not
clear, it is nominally associated with fasting insulin and
HOMA-IR, but not T2D. It may therefore represent a marker
of insulin resistance and perhaps other related common
dysmetabolic conditions.

In previous publications we have reported the associa-
tion of C2CD4B with fasting glucose (3) and that of the
nearby locus VPS13C with 2-h glucose (4); C2CD4B is also
associated with T2D in Japanese (44), with supportive
evidence found in Europeans (3,44). Here we show that
the same genomic region is associated with fasting pro-
insulin. The strongest association with proinsulin reported
here (rs4502156) and those associated with fasting glucose
and 2-h glucose may represent independent signals, since
they are all in relatively weak LD in HapMap CEU Europeans:
rs4502156 versus rs11071657 (best fasting glucose signal),
r
2 = 0.306; rs4502156 vs. rs17271305 (best 2-h glucose
signal), r2 = 0.450; and rs11071657 versus rs17271305, r 2 =
0.287. On the other hand, in Europeans our proinsulin-
associated SNP is in strong LD (r2 = 0.967) with the
T2D-associated SNP reported by Yamauchi et al. (44).
Although four strong biological candidates (C2CD4A,
C2CD4B, VPS13C, and RORA, a gene that encodes a
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member of the NR1 subfamily of nuclear hormone recep-
tors) are expressed in FAC-sorted b-cells, the relative ex-
pression of the first two is much higher in islets than in
other human tissues, again suggesting that these two
genes, encoding nuclear factors that are upregulated in

response to inflammation, may be particularly relevant to
endocrine pancreatic function.

The genome-wide association of a missense variant in
PCSK1 with fasting proinsulin also serves as a positive
control. PCSK1 encodes the protein prohormone convertase

FIG. 3. Expression profiles of biologically plausible genes within each associated locus across a range of human tissue types, including islet
preparations from three donors. Expression levels determined with respect to the geometric mean of three endogenous control assays. A: ARAP1
region; B: MADD region; C: VPS13C/C2CD4A/B region; D: LARP6 region; E: SGSM2 region. F: Expression levels of genes near the proinsulin-
associated variants in human FAC-sorted b-cells. Data are expression means 6 SD of the relative expression measured by quantitative PCR
obtained from three human nondiabetic donors.
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1/3 (PC1), which is the first enzyme in the proinsulin pro-
cessing pathway, where it cleaves proinsulin to 32,33-split
proinsulin (Supplementary Fig. 1). A related enzyme, PC2,
acts on 32,33-split proinsulin in the second processing
step. People deficient in PC1 become obese at an early age
and exhibit pituitary hypofunction because of the lack of
several mature peptide hormones (45), whereas PC2-null
mice demonstrate increased levels of 32,33-split proinsulin
(46). The rs6235 SNP reported here results in the sub-
stitution of a serine residue for threonine at position 690
of the molecule; the minor allele (Thr) is associated with
higher proinsulin levels. A nominal association of the same
allele with higher proinsulin levels has recently been re-
ported (40); its association with higher BMI is only nomi-
nal here, but confirms a previous report (47). This specific
amino acid change has been shown not to affect enzyme
catalysis or maturation of the protein in vitro (47), but the
COOH terminus of the protein (where S690T is located,
adjacent to a conserved proline residue) is known to direct
the correct subcellular targeting of the protein as well as
stabilizing and partially inhibiting PC1. Although one might
expect lower levels of the reaction product (32,33-split
proinsulin) in carriers of the risk allele, the potential di-
version of the substrate down its alternate path (giving rise
to 65,66-split proinsulin, whose assay typically has 60%
cross-reactivity with 32,33-split proinsulin) requires further
study. Alternatively, if changes in the activity of PC1 also
affect that of PC2 (for instance, by competing for inhibitory
peptides) one might see reductions in the catalytic function
of both enzymes and accumulation of both proinsulin and
32,33-split proinsulin.

Because of the reported relationship between proinsulin
levels and coronary events (11–13), the identification of
genetic determinants of proinsulin levels might help shed
light on whether hyperproinsulinemia is a mediator of
CAD or a byproduct of a shared etiological mechanism. If
hyperproinsulinemia is causally associated with an in-
creased risk of CAD, one might expect that SNPs that
specifically and selectively raise proinsulin levels should
increase the risk of CAD given an adequately powered
study. We have not observed such an effect for a genotype
score constructed with the genome-wide significant pro-
insulin association signals. Assuming conservative approx-
imations of the reported effect sizes of proinsulin on CAD
(OR ;1.5 per 1-SD increase in proinsulin) (12,13), and of
the nine SNPs reported here on circulating proinsulin (5%),
a CAD cohort like CARDIoGRAM has 99% power to detect
an effect of proinsulin SNPs on CAD. The absence of sta-
tistical significance argues against a direct etiological role of
proinsulin on CAD.

In summary, we have identified nine loci that associate
with fasting proinsulin levels. Several of these loci increase
risk of T2D; interestingly, both proinsulin-raising and
lowering alleles can lead to T2D through decreases in in-
sulin secretion, indicating defects distal or proximal to the
first enzymatic step in proinsulin conversion, respectively.
Other genetic determinants of proinsulin levels do not
necessarily lead to higher T2D risk, suggesting that it is
not a mere elevation in proinsulin, but rather the specific
impairment in proinsulin processing and the reaction of
the b-cell to this defect that determine whether ultimately
b-cell insufficiency will cause pathological hyperglyce-
mia. The direct elevation of fasting proinsulin out of
proportion to fasting insulin does not seem to increase
risk of CAD.
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