29 research outputs found

    The Maltase Involved in Starch Metabolism in Barley Endosperm Is Encoded by a Single Gene

    Get PDF
    During germination and early seedling growth of barley (Hordeum vulgare), maltase is responsible for the conversion of maltose produced by starch degradation in the endosperm to glucose for seedling growth. Despite the potential relevance of this enzyme for malting and the production of alcoholic beverages, neither the nature nor the role of maltase is fully understood. Although only one gene encoding maltase has been identified with certainty, there is evidence for the existence of other genes and for multiple forms of the enzyme. It has been proposed that maltase may be involved directly in starch granule degradation as well as in maltose hydrolysis. The aim of our work was to discover the nature of maltase in barley endosperm. We used ion exchange chromatography to fractionate maltase activity from endosperm of young seedlings, and we partially purified activity for protein identification. We compared maltase activity in wild-type barley and transgenic lines with reduced expression of the previously-characterised maltase gene Agl97, and we used genomic and transcriptomic information to search for further maltase genes. We show that all of the maltase activity in the barley endosperm can be accounted for by a single gene, Agl97. Multiple forms of the enzyme most likely arise from proteolysis and other post-translational modifications

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Use of the biolistic particle delivery system to transform fungal genomes

    No full text
    Biolistic delivery of transforming DNA into fungal genomes, especially when performed on uninucleate haploid conidia, has proven successful in bypassing the time-consuming repetitive purification of protoplasts used for the widely applied polyethylene glycol-mediated method. Biolistic transformation is also relatively quick compared to other available methods and provides a high percentage of stable transformants

    A comparison of North American versus non-North American ADHD study populations.

    No full text
    Contains fulltext : 51055.pdf (publisher's version ) (Closed access)Few large, prospective clinical studies in Europe have assessed the validity and applicability of research methods used to study ADHD in North America. To assess comparability of study populations, we examined baseline patient characteristics from a group of North American studies against those of a large European/African/Australian study. All studies used identical diagnostic assessments and inclusion criteria, with ADHD diagnosis and the presence of comorbid psychiatric conditions confirmed using the KSADS-PL. Raters were trained and assessed to ensure uniform diagnostic and symptom severity rating standards. Six hundred and four patients (mean age = 10.2 years) enrolled in the non-North American study, and 665 patients (mean age = 10.4 years) enrolled in the North American study. The proportion of girls was higher in the North American studies (29.2% vs. 10.4%, p < 0.001). In both groups, most patients had a positive family history of ADHD and previous stimulant treatment. Fewer had the inattentive subtype of ADHD, and mean severity was slightly higher in the non-North American study. Results demonstrate that, when a uniform set of rigorous, standardized diagnostic criteria are used by skilled clinicians, the patient populations identified are generally similar. This supports the practice of generalizing results from treatment studies across geographies

    The study design and methodology for the ARCHER study - adolescent rural cohort study of hormones, health, education, environments and relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adolescence is characterized by marked psychosocial, behavioural and biological changes and represents a critical life transition through which adult health and well-being are established. Substantial research confirms the role of psycho-social and environmental influences on this transition, but objective research examining the role of puberty hormones, testosterone in males and oestradiol in females (as biomarkers of puberty) on adolescent events is lacking. Neither has the tempo of puberty, the time from onset to completion of puberty within an individual been studied, nor the interaction between age of onset and tempo. This study has been designed to provide evidence on the relationship between reproductive hormones and the tempo of their rise to adult levels, and adolescent behaviour, health and wellbeing.</p> <p>Methods/Design</p> <p>The ARCHER study is a multidisciplinary, prospective, longitudinal cohort study in 400 adolescents to be conducted in two centres in regional Australia in the State of New South Wales. The overall aim is to determine how changes over time in puberty hormones independently affect the study endpoints which describe universal and risk behaviours, mental health and physical status in adolescents. Recruitment will commence in school grades 5, 6 and 7 (10–12 years of age). Data collection includes participant and parent questionnaires, anthropometry, blood and urine collection and geocoding. Data analysis will include testing the reliability and validity of the chosen measures of puberty for subsequent statistical modeling to assess the impact over time of tempo and onset of puberty (and their interaction) and mean-level repeated measures analyses to explore for significant upward and downward shifts on target outcomes as a function of main effects.</p> <p>Discussion</p> <p>The strengths of this study include enrollment starting in the earliest stages of puberty, the use of frequent urine samples in addition to annual blood samples to measure puberty hormones, and the simultaneous use of parental questionnaires.</p
    corecore