75 research outputs found

    Isolation and characterization of a laminin-binding protein from rat and chick muscle.

    Get PDF
    A major laminin-binding protein (LBP), distinct from previously described LBPs, has been isolated from chick and rat skeletal muscle (Mr 56,000 and 66,000, respectively). The purified LBPs from the two species were shown to be related antigenically and to have similar NH2-terminal amino acid sequences and total amino acid compositions. Protein blots using laminin and laminin fragments provided evidence that this LBP interacts with the major heparin-binding domain, E3, of laminin. Studies on the association of this LBP with muscle membrane fractions and reconstituted lipid vesicles indicate that this protein can interact with lipid bilayers and has properties of a peripheral, not an integral membrane protein. These properties are consistent with its amino acid sequence, determined from cDNAs (Clegg et al., 1988). Examination by light and electron microscopy of the LBP antigen distribution in skeletal muscle indicated that the protein is localized primarily extracellularly, near the extracellular matrix and myotube plasmalemma. While a form of this LBP has been identified in heart muscle, it is present at low or undetectable levels in other tissues examined by immunocytochemistry indicating that it is probably a muscle-specific protein. As this protein is localized extracellularly and can bind to both membranes and laminin, it may mediate myotube interactions with the extracellular matrix

    On the typology and the worship status of sacred trees with a special reference to the Middle East

    Get PDF
    This article contains the reasons for the establishment of sacred trees in Israel based on a field study. It includes 97 interviews with Muslim and Druze informants. While Muslims (Arabs and Bedouins) consider sacred trees especially as an abode of righteous figures' (Wellis') souls or as having a connection to their graves, the Druze relate sacred trees especially to the events or deeds in the lives of prophets and religious leaders. A literary review shows the existence of 24 known reasons for the establishment of sacred trees worldwide, 11 of which are known in Israel one of these is reported here for the first time. We found different trends in monotheistic and polytheistic religions concerning their current worship of sacred trees

    Six Novel Susceptibility Loci for Early-Onset Androgenetic Alopecia and Their Unexpected Association with Common Diseases

    Get PDF
    Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (p = 2.62×10−9–1.01×10−12). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (OR = 1.28, 95% confidence interval: 1.06–1.55, p = 8.9×10−3). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR) = 5.78, p = 1.4×10−88]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions

    Analytical methods for inferring functional effects of single base pair substitutions in human cancers

    Get PDF
    Cancer is a genetic disease that results from a variety of genomic alterations. Identification of some of these causal genetic events has enabled the development of targeted therapeutics and spurred efforts to discover the key genes that drive cancer formation. Rapidly improving sequencing and genotyping technology continues to generate increasingly large datasets that require analytical methods to identify functional alterations that deserve additional investigation. This review examines statistical and computational approaches for the identification of functional changes among sets of single-nucleotide substitutions. Frequency-based methods identify the most highly mutated genes in large-scale cancer sequencing efforts while bioinformatics approaches are effective for independent evaluation of both non-synonymous mutations and polymorphisms. We also review current knowledge and tools that can be utilized for analysis of alterations in non-protein-coding genomic sequence

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
    corecore