60 research outputs found
The e-learning grid: integrating e-pedagogy with novel technologies
In this paper we present the approach taken by the European E-Learning Grid consortium in building learning Grids. We focus on combining collaborative and peer-to-peer approaches with the relevant pedagogical paradigms where we can arrive at the E-Learning Grid. We present a framework that supports the creation of multi-user collaborative sessions, allowing users to self-organise and communicate, share tasks, workloads, and content, and interact across multiple different computing platforms and are aiming for heterogeneity in terms of both network and operating system platforms centred on fundamental technologies
Weak Chaos from Tsallis Entropy
We present a geometric, model-independent, argument that aims to explain why
the Tsallis entropy describes systems exhibiting "weak chaos", namely systems
whose underlying dynamics has vanishing largest Lyapunov exponent. Our argument
relies on properties of a deformation map of the reals induced by the Tsallis
entropy, and its conclusion agrees with all currently known results.Comment: 19 pages, Standard LaTeX2e, v2: addition of the last paragraph in
Section 4. Three additional refs. To be published in QScience Connec
DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases
Trinucleotide repeats sequences (TRS) represent a common type of genomic DNA
motif whose expansion is associated with a large number of human diseases. The
driving molecular mechanisms of the TRS ongoing dynamic expansion across
generations and within tissues and its influence on genomic DNA functions are
not well understood. Here we report results for a novel and notable collective
breathing behavior of genomic DNA of tandem TRS, leading to propensity for large
local DNA transient openings at physiological temperature. Our Langevin
molecular dynamics (LMD) and Markov Chain Monte Carlo (MCMC) simulations
demonstrate that the patterns of openings of various TRSs depend specifically on
their length. The collective propensity for DNA strand separation of repeated
sequences serves as a precursor for outsized intermediate bubble states
independently of the G/C-content. We report that repeats have the potential to
interfere with the binding of transcription factors to their consensus sequence
by altered DNA breathing dynamics in proximity of the binding sites. These
observations might influence ongoing attempts to use LMD and MCMC simulations
for TRS–related modeling of genomic DNA functionality in elucidating the
common denominators of the dynamic TRS expansion mutation with potential
therapeutic applications
Amyloid-Mediated Sequestration of Essential Proteins Contributes to Mutant Huntingtin Toxicity in Yeast
BACKGROUND: Polyglutamine expansion is responsible for several neurodegenerative disorders, among which Huntington disease is the most well-known. Studies in the yeast model demonstrated that both aggregation and toxicity of a huntingtin (htt) protein with an expanded polyglutamine region strictly depend on the presence of the prion form of Rnq1 protein ([PIN+]), which has a glutamine/asparagine-rich domain. PRINCIPAL FINDINGS: Here, we showed that aggregation and toxicity of mutant htt depended on [PIN+] only quantitatively: the presence of [PIN+] elevated the toxicity and the levels of htt detergent-insoluble polymers. In cells lacking [PIN+], toxicity of mutant htt was due to the polymerization and inactivation of the essential glutamine/asparagine-rich Sup35 protein and related inactivation of another essential protein, Sup45, most probably via its sequestration into Sup35 aggregates. However, inhibition of growth of [PIN+] cells depended on Sup35/Sup45 depletion only partially, suggesting that there are other sources of mutant htt toxicity in yeast. CONCLUSIONS: The obtained data suggest that induced polymerization of essential glutamine/asparagine-rich proteins and related sequestration of other proteins which interact with these polymers represent an essential source of htt toxicity
Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+
The COMPASS experiment at the CERN SPS has studied the diffractive
dissociation of negative pions into the pi- pi- pi+ final state using a 190
GeV/c pion beam hitting a lead target. A partial wave analysis has been
performed on a sample of 420000 events taken at values of the squared
4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances
a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data
show a significant natural parity exchange production of a resonance with
spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The
resonant nature of this wave is evident from the mass-dependent phase
differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a
resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2
is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged;
version 3 updated authors, text shortened, data unchange
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
- …