61 research outputs found

    An N=2 worldsheet approach to D-branes in bihermitian geometries: I. Chiral and twisted chiral fields

    Full text link
    We investigate N=(2,2) supersymmetric nonlinear sigma-models in the presence of a boundary. We restrict our attention to the case where the bulk geometry is described by chiral and twisted chiral superfields corresponding to a bihermitian bulk geometry with two commuting complex structures. The D-brane configurations preserving an N=2 worldsheet supersymmetry are identified. Duality transformations interchanging chiral for twisted chiral fields and vice versa while preserving all supersymmetries are explicitly constructed. We illustrate our results with various explicit examples such as the WZW-model on the Hopf surface S3xS1. The duality transformations provide e.g new examples of coisotropic A-branes on Kahler manifolds (which are not necessarily hyper-Kahler). Finally, by dualizing a chiral and a twisted chiral field to a semi-chiral multiplet, we initiate the study of D-branes in bihermitian geometries where the cokernel of the commutator of the complex structures is non-empty.Comment: LaTeX, 50 page

    Derivative corrections to the Born-Infeld action through beta-function calculations in N=2 boundary superspace

    Full text link
    We calculate the beta-functions for an open string sigma-model in the presence of a U(1) background. Passing to N=2 boundary superspace, in which the background is fully characterized by a scalar potential, significantly facilitates the calculation. Performing the calculation through three loops yields the equations of motion up to five derivatives on the fieldstrengths, which upon integration gives the bosonic sector of the effective action for a single D-brane in trivial bulk background fields through four derivatives and to all orders in alpha'. Finally, the present calculation shows that demanding ultra-violet finiteness of the non-linear sigma-model can be reformulated as the requirement that the background is a deformed stable holomorphic U(1) bundle.Comment: 25 pages, numerous figure

    Regulation of Coronary Blood Flow

    Get PDF
    The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017

    Third universal definition of myocardial infarction

    Get PDF
    "Myocardial infarction (MI) can be recognised by clinical features, including electrocardiographic (ECG) findings, elevated values of biochemical markers (biomarkers) of myocardial necrosis, and by imaging, or may be defined by pathology. It is a major cause of death and disability worldwide. MI may be the first manifestation of coronary artery disease (CAD) or it may occur, repeatedly, in patients with established disease. Information on MI rates can provide useful information regarding the burden of CAD within and across populations, especially if standardized data are collected in a manner that distinguishes between incident and recurrent events. From the epidemiological point of view, the incidence of MI in a population can be used as a proxy for the prevalence of CAD in that population. The term ‘myocardial infarction’ may have major psychological and legal implications for the individual and society. It is an indicator of one of the leading health problems in the world and it is an outcome measure in clinical trials, observational studies and quality assurance programmes. These studies and programmes require a precise and consistent definition of MI. In the past, a general consensus existed for the clinical syndrome designated as MI. In studies of disease prevalence, the World Health Organization (WHO) defined MI from symptoms, ECG abnormalities and cardiac enzymes. However, the development of ever more sensitive and myocardial tissue-specific cardiac biomarkers and more sensitive imaging techniques now allows for detection of very small amounts of myocardial injury or necrosis. Additionally, the management of patients with MI has significantly improved, resulting in less myocardial injury and necrosis, in spite of a similar clinical presentation. Moreover, it appears necessary to distinguish the various conditions which may cause MI, such as ‘spontaneous’ and ‘procedure-related’ MI. Accordingly, physicians, other healthcare providers and patients require an up-to-date definition of MI.

    Third universal definition of myocardial infarction

    Get PDF
    "Myocardial infarction (MI) can be recognised by clinical features, including electrocardiographic (ECG) findings, elevated values of biochemical markers (biomarkers) of myocardial necrosis, and by imaging, or may be defined by pathology. It is a major cause of death and disability worldwide. MI may be the first manifestation of coronary artery disease (CAD) or it may occur, repeatedly, in patients with established disease. Information on MI rates can provide useful information regarding the burden of CAD within and across populations, especially if standardized data are collected in a manner that distinguishes between incident and recurrent events. From the epidemiological point of view, the incidence of MI in a population can be used as a proxy for the prevalence of CAD in that population. The term ‘myocardial infarction’ may have major psychological and legal implications for the individual and society. It is an indicator of one of the leading health problems in the world and it is an outcome measure in clinical trials, observational studies and quality assurance programmes. These studies and programmes require a precise and consistent definition of MI. In the past, a general consensus existed for the clinical syndrome designated as MI. In studies of disease prevalence, the World Health Organization (WHO) defined MI from symptoms, ECG abnormalities and cardiac enzymes. However, the development of ever more sensitive and myocardial tissue-specific cardiac biomarkers and more sensitive imaging techniques now allows for detection of very small amounts of myocardial injury or necrosis. Additionally, the management of patients with MI has significantly improved, resulting in less myocardial injury and necrosis, in spite of a similar clinical presentation. Moreover, it appears necessary to distinguish the various conditions which may cause MI, such as ‘spontaneous’ and ‘procedure-related’ MI. Accordingly, physicians, other healthcare providers and patients require an up-to-date definition of MI.

    2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease

    Get PDF
    The recommendations listed in this document are, whenever possible, evidence based. An extensive evidence review was conducted as the document was compiled through December 2008. Repeated literature searches were performed by the guideline development staff and writing committee members as new issues were considered. New clinical trials published in peer-reviewed journals and articles through December 2011 were also reviewed and incorporated when relevant. Furthermore, because of the extended development time period for this guideline, peer review comments indicated that the sections focused on imaging technologies required additional updating, which occurred during 2011. Therefore, the evidence review for the imaging sections includes published literature through December 2011
    • …
    corecore