10,986 research outputs found

    Transonic divider for gas chromatograph effluents

    Get PDF
    Transonic effluent divider system was developed which permits varying mass input of gas chromatographic effluent into mass spectrometer without affecting performance of gas chromatograph. Mechanisms of operation are described

    Compact rotating cup anemometer

    Get PDF
    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations

    Lithology and the evolution of bedrock rivers in post-orogenic settings: Constraints from the high elevation passive continental margin of SE Australia

    Get PDF
    Understanding the role of lithological variation in the evolution of topography remains a fundamental issue, especially in the neglected post-orogenic terrains. Such settings represent the major part of the Earth's surface and recent modelling suggests that a range of interactions can account for the presence of residual topography for hundreds of millions of years, thereby explaining the great antiquity of landscapes in such settings. Field data from the inland flank of the SE Australian high-elevation continental margin suggest that resistant lithologies act to retard or even preclude the headward transmission of base-level fall driven by the isostatic response to regional denudation. Rejuvenation, be it episodic or continuous, is ‘caught up’ on these resistant lithologies, meaning in effect that the bedrock channels and hillslopes upstream of these ‘stalled’ knickpoints have become detached from the base-level changes downstream of the knickpoints. Until these knickpoints are breached, therefore, catchment relief must increase over time, a landscape evolution scenario that has been most notably suggested by Crickmay and Twidale. The role of resistant lithologies indicates that detachment-limited conditions are a key to the longevity of some post-orogenic landscapes, whereas the general importance of transport-limited conditions in the evolution of post-orogenic landscapes remains to be evaluated in field settings. Non-steady-state landscapes may lie at the heart of widespread, slowly evolving post-orogenic settings, such as high-elevation passive continental margins, meaning that non-steady-state landscapes, with increasing relief through time, are the ‘rule’ rather than the exception

    A Review of the Erosion of Thermal Barrier Coatings.

    Get PDF
    The application of thermal barrier coatings (TBCs) to components with internal cooling in the hot gas stream of gas turbine engines has facilitated a steep increase in the turbine entry temperature and the associated increase in performance and efficiency of gas turbine engines. However, TBCs are susceptible to various life limiting issues associated with their operating environment including erosion, corrosion, oxidation, sintering and foreign object damage (FOD). This is a review paper that examines various degradation and erosion mechanisms of TBCs, especially those produced by electron beam physical vapour deposition (EB-PVD). The results from a number of laboratory tests under various impact conditions are discussed before the different erosion and FOD mechanisms are reviewed. The transitions between the various erosion mechanisms are discussed in terms of the D/d ratio (contact area diameter/column diameter), a relatively new concept that relates the impact size to the erosion mechanism. The effects of ageing, dopant additions and calciumâ  magnesiumâ  aluminaâ  silicates on the life of TBCs are examined. It is shown that while ageing increases the erosion rate of EB-PVD TBCs, ageing of plasma sprayed TBCs in fact lowers the erosion rate. Finally modelling of EB-PVD TBCs is briefly intr

    Erosion, corrosion and erosion-corrosion of EB PVD thermal barrier coatings

    Get PDF
    Electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings (TBCs) have been used in gas turbine engines for a number of years. The primary mode of failure is attributed to oxidation of the bond coat and growth of the thermally grown oxide (TGO), the alumina scale that forms on the bond coat and to which the ceramic top coat adheres. Once the TGO reaches a critical thickness, the TBC tends to spall and expose the underlying substrate to the hot gases. Erosion is commonly accepted as a secondary failure mechanism, which thins the TBC thus reducing its insulation capability and increasing the TGO growth rate. In severe conditions, erosion can completely remove the TBC over time, again resulting in the exposure of the substrate, typically Ni-based superalloys. Since engine efficiency is related to turbine entry temperature (TET), there is a constant driving force to increase this temperature. With this drive for higher TETs comes corrosion problems for the yttria stabilised zirconia (YSZ) ceramic topcoat. YSZ is susceptible to attack from molten calciumâ  magnesiumâ  aluminaâ  silicates (CMAS) which degrades the YSZ both chemically and micro-structurally. CMAS has a melting point of around 1240 à °C and since it is common in atmospheric dust it is easily deposited onto gas turbine blades. If the CMAS then melts and penetrates into the ceramic, the life of the TBC can be significantly reduced. This paper discusses the various failure mechanisms associated with the erosion, corrosion and erosionâ  corrosion of EB PVD TBCs. The concept of a dimensionless ratio D/d, where D is the contact footprint diameter and d is the column diameter, as a means of determining the erosion mechanism is introduced and discussed for E
    • …
    corecore