19 research outputs found

    Development and Characterisation of Gastroretentive Solid Dosage Form Based on Melt Foaming

    Get PDF
    Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Massive polyuria after kidney transplantation

    No full text

    A prospective observational study of community-acquired bacterial bloodstream infections in Metro Manila, the Philippines

    No full text
    Community-acquired bacterial bloodstream infections are caused by diverse pathogens with changing antimicrobial-resistance patterns. In low-middle income countries in Southeast Asia, where dengue fever is endemic and a leading cause of fever, limited information is available about bacterial bloodstream infections due to challenges of implementing a blood culture service. This study describes bacterial bloodstream pathogens and antimicrobial-resistance patterns in Metro Manila, the Philippines. We aimed to identify the proportion of patients with a positive blood culture, the bacteria isolated and their antimicrobial resistance patterns, and the clinical characteristics of these patients, in this dengue endemic area. We conducted a prospective observational study in a single hospital enrolling febrile patients clinically suspected of having a community-acquired bacterial bloodstream infection between 1st July 2015 and 30th June 2019. Each patient had a blood culture and additional diagnostic tests according to their clinical presentation. We enrolled 1315 patients and a significant positive blood culture was found in 77 (5.9%) including Staphylococcus aureus (n = 20), Salmonella enterica Typhi (n = 18), Escherichia coli (n = 16), Streptococcus pneumoniae (n = 3) and Burkholderia pseudomallei (n = 2). Thirty-four patients had meningococcal disease diagnosed by culture (n = 8) or blood PCR (n = 26). Additional confirmed diagnoses included leptospirosis (n = 177), dengue virus infection (n = 159) and respiratory diphtheria (n = 50). There were 79 (6.0%, 95%CI 4.8%-7.4%) patients who died within 28 days of enrollment. Patients with a positive blood culture were significantly more likely to die than patients with negative culture (15.2% vs 4.4%, P<0.01). Among S. aureus isolates, 11/20 (55%) were methicillin-resistant (MRSA) and ST30: USA1100 was dominant sequence type (88.9%). Antimicrobial-susceptibility was well preserved in S. enterica Typhi. Among hospitalized patients with clinically suspected community-acquired bacterial bloodstream infection in Metro Manila, the Philippines, 5.9% had a blood culture confirmed infection of whom 15.6% died. S. aureus, including a significant number of MRSA (USA1100 clones), S. enterica Typhi, E.coli and Neisseria meningitidis were frequently identified pathogens
    corecore