111 research outputs found

    The Macrobrachium rosenbergii nodavirus: a detailed review of structure, infectivity, host immunity, diagnosis and prevention

    Get PDF
    The Macrobrachium rosenbergii nodavirus causes white tail disease, which primarily infects giant freshwater prawns, Macrobrachium rosenbergii. The infection leads to almost 100% mortality in post-larvae, causing significant economic losses in aquaculture farms. To develop effective measures against outbreaks, a good understanding of the virus is essential. In this review, we discuss key aspects of the Macrobrachium rosenbergii nodavirus including its structure, mechanisms of transmission and infection and common strategies for detection and prevention of outbreaks. Structurally, cryogenic electron microscopy revealed that the nodavirus has a T = 3 icosahedral structure with dimeric blade-like spikes on its surface. Homology modelling comparing wild-type and enzymatically cleaved Macrobrachium rosenbergii nodavirus-like particles revealed the significance of these spikes or protruding domains for binding. In vitro and in vivo studies have identified key aspects of Macrobrachium rosenbergii nodavirus infectivity, including (i) the viral binding targets such as transglutaminase and caveolin-1, (ii) utilisation of B2-like proteins in promoting infectivity and intracellular migration, (iii) replication mechanisms and (iv) co-infection with the extra small virus. Though susceptible at a post-larvae stage, adult Macrobrachium rosenbergii is immune to Macrobrachium rosenbergii nodavirus infection. During outbreaks, polymerase chain reaction and in situ hybridisation-based detection techniques are commonly used to identify infected populations. Currently, the most useful strategies for an outbreak are physical biosecurity measures and prophylaxis such as vaccination and immunostimulants. Finally, critical gaps in research include development of immortalised shrimp cell models, elucidation of time-resolved protein changes post-infection and development of therapies to treat infections to mitigate economic losses during outbreaks

    Transferability of Type 2 Diabetes Implicated Loci in Multi-Ethnic Cohorts from Southeast Asia

    Get PDF
    Recent large genome-wide association studies (GWAS) have identified multiple loci which harbor genetic variants associated with type 2 diabetes mellitus (T2D), many of which encode proteins not previously suspected to be involved in the pathogenesis of T2D. Most GWAS for T2D have focused on populations of European descent, and GWAS conducted in other populations with different ancestry offer a unique opportunity to study the genetic architecture of T2D. We performed genome-wide association scans for T2D in 3,955 Chinese (2,010 cases, 1,945 controls), 2,034 Malays (794 cases, 1,240 controls), and 2,146 Asian Indians (977 cases, 1,169 controls). In addition to the search for novel variants implicated in T2D, these multi-ethnic cohorts serve to assess the transferability and relevance of the previous findings from European descent populations in the three major ethnic populations of Asia, comprising half of the world's population. Of the SNPs associated with T2D in previous GWAS, only variants at CDKAL1 and HHEX/IDE/KIF11 showed the strongest association with T2D in the meta-analysis including all three ethnic groups. However, consistent direction of effect was observed for many of the other SNPs in our study and in those carried out in European populations. Close examination of the associations at both the CDKAL1 and HHEX/IDE/KIF11 loci provided some evidence of locus and allelic heterogeneity in relation to the associations with T2D. We also detected variation in linkage disequilibrium between populations for most of these loci that have been previously identified. These factors, combined with limited statistical power, may contribute to the failure to detect associations across populations of diverse ethnicity. These findings highlight the value of surveying across diverse racial/ethnic groups towards the fine-mapping efforts for the casual variants and also of the search for variants, which may be population-specific

    A statistical method for region-based meta-analysis of genome-wide association studies in genetically diverse populations

    Get PDF
    Genome-wide association studies (GWAS) have become the preferred experimental design in exploring the genetic etiology of complex human traits and diseases. Standard SNP-based meta-analytic approaches have been utilized to integrate the results from multiple experiments. This fundamentally assumes that the patterns of linkage disequilibrium (LD) between the underlying causal variants and the directly genotyped SNPs are similar across the populations for the same SNPs to emerge with surrogate evidence of disease association. We introduce a novel strategy for assessing regional evidence of phenotypic association that explicitly incorporates the extent of LD in the region. This provides a natural framework for combining evidence from multi-ethnic studies of both dichotomous and quantitative traits that (i) accommodates different patterns of LD, (ii) integrates different genotyping platforms and (iii) allows for the presence of allelic heterogeneity between the populations. Our method can also be generalized to perform gene-based or pathway-based analyses. Applying this method on real GWAS data in type 2 diabetes (T2D) boosted the association evidence in regions well-established for T2D etiology in three diverse South-East Asian populations, as well as identified two novel gene regions and a biologically convincing pathway that are subsequently validated with data from the Wellcome Trust Case Control Consortium

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Effectiveness of Wear Plate at the Saddle Support

    No full text
    corecore