31 research outputs found

    Demand Activated Transit.

    Get PDF

    Single-cell analysis tools for drug discovery and development

    Get PDF
    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed

    Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium

    Get PDF
    Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need

    Dijet production in √s = 7 TeV pp collisions with large rapidity gaps at the ATLAS experiment

    Get PDF
    A 6.8 nb−¹ sample of pp collision data collected under low-luminosity conditions at √s = 7 TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with pT > 20 GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in ΔηF, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, ξ˜, of the fractional momentum loss of the proton assuming single diffractive dissociation (pp → p X). Model comparisons indicate a dominant non-diffractive contribution up to moderately large ηF and small ξ˜, with a diffractive contribution which is significant at the highest ΔηF and the lowest ξ˜. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions

    Sanctions and Democratization in the Post-Cold War Era

    Full text link

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    Russia's Wealth Possessors Study 2015

    No full text

    Understanding tumor ecosystems by single-cell sequencing: promises and limitations

    No full text

    Regulation of type 1 diabetes, tuberculosis, and asthma by parasites

    No full text

    Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatory actions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19. Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospital with COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients were randomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once per day by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatment groups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment and were twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants and local study staff were not masked to the allocated treatment, but all others involved in the trial were masked to the outcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) were eligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was 65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomly allocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall, 561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days (rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median 10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days (rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, no significant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilation or death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24). Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or other prespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restricted to patients in whom there is a clear antimicrobial indication. Funding UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore