50 research outputs found

    Enhancing the Privacy of Decentralized Identifiers with Ring Signatures

    Get PDF
    Most identifiers used today, such as OpenID Connect, are controlled by third parties, which can track how the identifier is used. To overcome this, self-sovereign identifiers, such as Decentralized Identifiers (DIDs), which are entirely owned and managed by the user, have been developed. However, in some cases even DIDs alone do not sufficiently protect the user's privacy. For example, if a service can be accessed at multiple fixed locations, using the same identifier repeatedly for each location may over time also reveal the user's location. One of the techniques to hide the exact service identifiers are ring signatures, which enable the generation of anonymous signatures where the real signer's identity is hidden in a set of possible signers. This thesis takes the use case of electric vehicle charging, where the electric vehicle location may be revealed if static identifiers are used by the electric vehicles and charging stations. A previous solution uses a new ephemeral DID for every interaction, but this requires the creation of a large number of DIDs. This thesis examines an alternative approach of using ring signatures to achieve better privacy with a lower number of DIDs. The major outcomes of this thesis include how to implement ring signatures for anonymous authentication, comparison of resource consumption with respect to the previous solution, and the applicability of ring signature technology on a broader scale such as in constrained devices. The performance of the new solution was compared with the existing solution by implementing prototypes on Android phones, which communicate over Bluetooth. An assumption on the number of charging events was made based on real data for the country of Norway. The results show that ring signatures are easy to implement and provide slightly better privacy but they are significantly more resource-intensive in terms of storage (about 2 times more) and processing (about 9 times slower). Therefore, large scale implementation of ring signatures on the constrained devices is challenging

    ACCU3RATE: A mobile health application rating scale based on user reviews

    Get PDF
    Background- Over the last decade, mobile health applications (mHealth App) have evolved exponentially to assess and support our health and well-being. Objective- This paper presents an Artificial Intelligence (AI)-enabled mHealth app rating tool, called ACCU3RATE, which takes multidimensional measures such as user star rating, user review and features declared by the developer to generate the rating of an app. However, currently, there is very little conceptual understanding on how user reviews affect app rating from a multi-dimensional perspective. This study applies AI-based text mining technique to develop more comprehensive understanding of user feedback based on several important factors, determining the mHealth app ratings. Method- Based on the literature, six variables were identified that influence the mHealth app rating scale. These factors are user star rating, user text review, user interface (UI) design, functionality, security and privacy, and clinical approval. Natural Language Toolkit package is used for interpreting text and to identify the App users’ sentiment. Additional considerations were accessibility, protection and privacy, UI design for people living with physical disability. Moreover, the details of clinical approval, if exists, were taken from the developer’s statement. Finally, we fused all the inputs using fuzzy logic to calculate the new app rating score. Results and conclusions- ACCU3RATE concentrates on heart related Apps found in the play store and App gallery. The findings indicate the efficacy of the proposed method as opposed to the current device scale. This study has implications for both App developers and consumers who are using mHealth Apps to monitor and track their health. The performance evaluation shows that the proposed mHealth scale has shown excellent reliability as well as internal consistency of the scale, and high inter-rater reliability index. It has also been noticed that the fuzzy based rating scale, as in ACCU3RATE, matches more closely to the rating performed by experts

    Biochar enriched compost elevates mungbean (Vigna radiata L.) yield under different salt stresses

    Get PDF
    Context: Organic amendments including biochar can improve crop production under salt stress. However, it is still not clear whether biochar enriched compost would enhance legume performance under salt stress after fresh application and in succeeding crops. Aim: The aim of the study was to examine the effect of biochar enriched compost in reducing the salinity stress after fresh application at increasing rates and in the succeeding crop. Methods: In a pot trial, biochar–compost was applied at four different rates (0, 1, 2, and 3%) while mungbean was grown under five different salt stress conditions (0, 2, 4, 8, and 12 dS m−1). In the field trial, the residual effect of different organic amendments (control, compost, cow urine, compost with cow urine, biochar–compost, and biochar–compost with cow urine) was evaluated under three different salt stress conditions (0, 3, and 6 dS m−1). Soil properties, plant performance, and nutrient uptake were determined. Key Results: Results revealed a significant biochar × salt treatment interaction in our pot culture. Biochar–compost application can minimise salt effects at a higher application rate resulting in better plant performance; however, these effects are minimal when salt was added at higher rates. We also observed a significant residual effect of biochar compost on biomass production (51.03%), seed yield (79.48%), and K+ uptake (77.95%) than the control treatment. We believe that biochar–compost buffered Na+ while improved plant water, and nutrient availability and uptake. In addition, biochar–compost might have increased nitrogen acquisition through enhanced biological nitrogen fixation. Conclusions: Biochar enriched compost enhances the yield of legume grown under salt stress. Implications: Our results suggest that biochar–compost can be one of the sustainable means for alleviating soil salinity

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

    Get PDF
    We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see also the public announcement at http://www.ligo.org/science/Publication-S6BurstAllSky

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore