1,421 research outputs found

    Identification of single chain antibodies to breast cancer stem cells using phage display

    Full text link
    Recent evidence suggests that most malignancies are driven by “cancer stem cells” sharing the signature characteristics of adult stem cells: the ability to self renew and to differentiate. Furthermore these cells are thought to be quiescent, infrequently dividing cells with a natural resistance to chemotherapeutic agents. These studies theorize that therapies, which effectively treat the majority of tumor cells but ‘miss’ the stem cell population, will fail, while therapies directed at stern cells can potentially eradicate tumors. In breast cancer, researchers have isolated ‘breast cancer stem cells’ capable of recreating the tumor in vivo and in vitro . Generated new tumors contained both additional numbers of cancer stem cells and diverse mixed populations of cells present in the initial tumor, supporting the intriguing self-renewal and differentiation characteristics. In the present study, an antibody phage library has been used to search for phage displayed-single chain antibodies (scFv) with selective affinity to specific targets on breast cancer stem cells. We demonstrate evidence of two clones binding specifically to a cancer stem cell population isolated from the SUMl59 breast cancer cell line. These clones had selective affinity for cancer stem cells and they were able to select cancer stem cells among a large population of non-stem cancer cells in paraffin-embedded sections. The applicability of these clones to paraffin sections and frozen tissue specimens made them good candidates to be used as diagnostic and prognostic markers in breast cancer patient samples taking into consideration the cancer stern cell concept in tumor biology. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64553/1/285_ftp.pd

    Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling.

    Get PDF
    International audienceRecent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN) is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in the regulation of normal and malignant mammary stem/progenitor cell populations. We demonstrate that activation of this pathway, via PTEN knockdown, enriches for normal and malignant human mammary stem/progenitor cells in vitro and in vivo. Knockdown of PTEN in normal human mammary epithelial cells enriches for the stem/progenitor cell compartment, generating atypical hyperplastic lesions in humanized NOD/SCID mice. Akt-driven stem/progenitor cell enrichment is mediated by activation of the Wnt/beta-catenin pathway through the phosphorylation of GSK3-beta. In contrast to chemotherapy, the Akt inhibitor perifosine is able to target the tumorigenic cell population in breast tumor xenografts. These studies demonstrate an important role for the PTEN/PI3-K/Akt/beta-catenin pathway in the regulation of normal and malignant stem/progenitor cell populations and suggest that agents that inhibit this pathway are able to effectively target tumorigenic breast cancer cells

    Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells

    Full text link
    Identification of cancer stem cells is crucial for advancing cancer biology and therapy. Several markers including CD24, CD44, CD117, CD133, the G subfamily of ATP‐binding cassette transporters (ABCG), epithelial specific antigen (ESA) and aldehyde dehydrogenase (ALDH) are used to identify and investigate human epithelial cancer stem cells in the literature. We have now systemically analyzed and compared the expression of these markers in fresh ovarian epithelial carcinomas. Although the expression levels of these markers were unexpectedly variable and partially overlapping in fresh ovarian cancer cells from different donors, we reliably detected important levels of CD133 and ALDH in the majority of fresh ovarian cancer. Furthermore, most of these stem cell markers including CD133 and ALDH were gradually lost following in vitro passage of primary tumor cells. However, the expression of ALDH and CD133, but not CD24, CD44 and CD117, could be partially rescued by the in vitro serum‐free and sphere cultures and by the in vivo passage in the immune‐deficient xenografts. ALDH + and CD133 + cells formed three‐dimensional spheres more efficiently than their negative counterparts. These sphere‐forming cells expressed high levels of stem cell core gene transcripts and could be expanded and form additional spheres in long‐term culture. ALDH + , CD133 + and ALDH + CD133 + cells from fresh tumors developed larger tumors more rapidly than their negative counterparts. This property was preserved in the xenografted tumors. Altogether, the data suggest that ALDH + and CD133 + cells are enriched with ovarian cancer‐initiating (stem) cells and that ALDH and CD133 may be widely used as reliable markers to investigate ovarian cancer stem cell biology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88104/1/25967_ftp.pd

    Targeting breast cancer stem cells: fishing season open!

    Get PDF
    Studies describing the tumor as a hierarchically organized cell population have changed the classical oncogenesis view and propose new therapeutic strategies. Cancer stem cells (CSCs) are thought to sustain tumor initiation/maintenance, therapy resistance, and systemic metastases. Targeting this tumor cell population is crucial to achieve a true cancer cure. A large research effort is now aiming to develop drugs targeting CSCs, based either on a priori understanding of key pathways regulating CSC biology or on high-throughput screening to identify novel targets and compounds

    Breast cancer stem cell markers – the rocky road to clinical applications

    Get PDF
    Lately, understanding the role of cancer stem cells in tumor initiation and progression became a major focus in stem cell biology and in cancer research. Considerable efforts, such as the recent studies by Honeth and colleagues, published in the June issue of Breast Cancer Research, are directed towards developing clinical applications of the cancer stem cell concepts. This work shows that the previously described CD44+CD24- stem cell phenotype is associated with basal-type breast cancers in human patients, in particular BRCA1 inherited cancers, but does not correlate with clinical outcome. These very interesting findings caution that the success of our efforts in translating cancer stem cell research into clinical practice depends on how thorough and rigorous we are at characterizing these cells

    UM‐SCC‐104: A New human papillomavirus‐16–positive cancer stem cell–containing head and neck squamous cell carcinoma cell line

    Full text link
    Background Few human papillomavirus (HPV)(+) head and neck squamous cell carcinoma (HNSCC) cell lines exist. We established University of Michigan‐squamous cell carcinoma‐104 (UM‐SCC‐104), a new HPV(+) HNSCC cell line from a recurrent oral cavity tumor, and characterized it for the presence of cancer stem cells (CSCs). Methods Tumor cells were tested for biomarker expression by immunohistology, and the presence of HPV was assessed by several methods. Results UM‐SCC‐104 has a unique genotype, contains HPV‐16, and expresses E6/E7. Inoculation of aldehyde dehydrogenase (ALDH)(+) and ALDH(−) cells in an immunocompromised mouse resulted in tumor growth from the ALDH(+) cells after 6 weeks that recapitulated the histology of the primary, whereas ALDH(−) cells did not produce tumors. Conclusion UM‐SCC‐104, a new HPV‐16, CSC‐containing HNSCC cell line will aid in studying recurrent HPV(+) tumors. The aggressive nature of this tumor is consistent with high uniform expression of epidermal growth factor receptor (EGFR) and a functionally significant proportion of ALDH(+) CSCs. © 2011 Wiley Periodicals, Inc. Head Neck , 2011Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93694/1/21962_ftp.pd

    Expression of the stem cell marker ALDH1 in BRCA1 related breast cancer

    Get PDF
    Introduction The BRCA1 protein makes mammary stem cells differentiate into mature luminal and myoepithelial cells. If a BRCA1 mutation results in a differentiation block, an enlarged stem cell component might be present in the benign tissue of BRCA1 mutation carriers, and these mammary stem cells could be the origin of BRCA1 related breast cancer. Since ALDH1 is a marker of both mammary stem cells and breast cancer stem cells, we compared ALDH1 expression in malignant tissue of BRCA1 mutation carriers to non-carriers. Methods Forty-one BRCA1 related breast cancers and 41 age-matched sporadic breast cancers were immunohistochemically stained for ALDH1. Expression in epithelium and stroma was scored and compared. Results Epithelial (P=0.001) and peritumoral (P=0.001) ALDH1 expression was significantly higher in invasive BRCA1 related carcinomas compared to sporadic carcinomas. Intratumoral stromal ALDH1 expression was similarly high in both groups. ALDH1 tumor cell expression was an independent predictor of BRCA1 mutation status. Conclusion BRCA1 related breast cancers showed significantly more frequent epithelial ALDH1 expression, indicating that these hereditary tumors have an enlarged cancer stem cell component. Besides, (peritumoral) stromal ALDH1 expression was also more frequent in BRCA1 mutation carriers. ALDH1 may therefore be a diagnostic marker and a therapeutic target of BRCA1 related breast cancer

    MicroRNAs: shortcuts in dealing with molecular complexity?

    Get PDF
    Recent studies from Clarke's group published in the journal Cell indicate that miRNAs may be the elusive universal stem cell markers that the field of cancer stem cell biology has been seeking. Distinct profiles of miRNAs appear to reflect the state of cell differentiation not only in breast cancer cells, but also in normal mammary epithelial cells. Moreover, they are conserved across tissues and species. The authors of this work also show evidence that downregulation of miRNA-200c in normal and malignant breast stem cells and in embryonal carcinoma cells has functional relevance, being responsible for the proliferative potential of these cells in vitro and in vivo
    • 

    corecore