5,269 research outputs found

    Large Area Electronic Skin

    Get PDF
    Technological advances have enabled various approaches for developing artificial organs such as bionic eyes, artificial ears, and lungs etc. Recently electronics (e-skin) or tactile skin has attracted increasing attention for its potential to detect subtle pressure changes, which may open up applications including real-time health monitoring, minimally invasive surgery, and prosthetics. The development of e-skin is challenging as, unlike other artificial organs, tactile skin has large number of different types of sensors, which are distributed over large areas and generate large amount of data. On top of this, the attributes such as softness, stretchability, and bendability etc., are difficult to be achieved as today's electronics technology is meant for electronics on planar and stiff substrates such as silicon wafers. This said, many advances, pursued through “More than Moore” technology, have recently raised hope as some of these relate to flexible electronics and have been targeted towards developing e-skin. Depending on the technology and application, the scale of e-skin could vary from small patch (e.g. for health monitoring) to large area skin (e.g. for robotics). This invited paper presents some of the advances in large area e-skin and flexible electronics, particularly related to robotics

    Total Synthesis and Antimicrobial Activity of a Natural Cycloheptapeptide of Marine Origin

    Get PDF
    The present study deals with the first total synthesis of the proline-rich cyclopolypeptide stylisin 2 via a solution phase technique by coupling of the Boc-l-Pro-l-Ile-l-Pro-OH tripeptide unit with the l-Phe-l-Pro-l-Pro-l-Tyr-OMe tetrapeptide unit, followed by cyclization of the resulting linear heptapeptide fragment. The chemical structure of the finally synthesized peptide was elucidated by FTIR, 1H/13C-NMR and FAB MS spectral data, as well as elemental analyses. The newly synthesized peptide was subjected to antimicrobial screening against eight pathogenic microbes and found to exhibit potent antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae and Candida albicans, in addition to moderate antidermatophyte activity against pathogenic Trichophyton mentagrophytes and Microsporum audouinii when compared to standard drugs—gatifloxacin and griseofulvin

    Multiple facets of tightly coupled transducer-transistor structures

    Get PDF
    The ever increasing demand for data processing requires different paradigms for electronics. Excellent performance capabilities such as low power and high speed in electronics can be attained through several factors including using functional materials, which sometimes acquire superior electronic properties. The transduction-based transistor switching mechanism is one such possibility, which exploits the change in electrical properties of the transducer as a function of a mechanically induced deformation. Originally developed for deformation sensors, the technique is now moving to the centre stage of the electronic industry as the basis for new transistor concepts to circumvent the gate voltage bottleneck in transistor miniaturization. In issue 37 of Nanotechnology, Chang et al show the piezoelectronic transistor (PET), which uses a fast, low-power mechanical transduction mechanism to propagate an input gate voltage signal into an output resistance modulation. The findings by Chang et al will spur further research into piezoelectric scaling, and the PET fabrication techniques needed to advance this type of device in the future
    • …
    corecore