2,971 research outputs found

    Views on computer program documentation and automation

    Get PDF
    Various aspects of the problem of program documentation and description are discussed. Particular emphasis is placed on the problem of semantics. It is pointed out that the information produced by documentation of a program, if presented to several different groups, may mean entirely different things to these groups. Recognition of the fact that people look at problems differently is proposed as a more practical approach to the problem of documentation rather than extensive use of standards or strict formatting. The difficulties involved in searching for ways to provide a common ground for the transmission and use of information are discussed

    Utilization of habrobracon and artemia as experimental materials in bioastronautic studies status report, jan. - jun. 1965

    Get PDF
    Radiation and gravitational effect on wasps and shrimp - animal stud

    Geometric path planning without maneuvers for nonholonomic parallel orienting robots

    Get PDF
    Current geometric path planners for nonholonomic parallel orienting robots generate maneuvers consisting of a sequence of moves connected by zero-velocity points. The need for these maneuvers restrains the use of this kind of parallel robots to few applications. Based on a rather old result on linear time-varying systems, this letter shows that there are infinitely differentiable paths connecting two arbitrary points in SO(3) such that the instantaneous axis of rotation along the path rest on a fixed plane. This theoretical result leads to a practical path planner for nonholonomic parallel orienting robots that generates single-move maneuvers. To present this result, we start with a path planner based on three-move maneuvers, and then we proceed by progressively reducing the number of moves to one, thus providing a unified treatment with respect to previous geometric path planners.Peer ReviewedPostprint (author's final draft

    Joint determination of orbits of spacecraft and moons of Mars by optical sighting of the moons

    Get PDF
    Scanning optical system to provide attitude and trajectory of unmanned spacecraft during orbit about Mar

    Implementation and analysis of a Navier-Stokes algorithm on parallel computers

    Get PDF
    The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented

    Solving the Cauchy-Riemann equations on parallel computers

    Get PDF
    Discussed is the implementation of a single algorithm on three parallel-vector computers. The algorithm is a relaxation scheme for the solution of the Cauchy-Riemann equations; a set of coupled first order partial differential equations. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, and SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The machine architectures are briefly described. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Conclusions are presented

    Embedded cavity drag in steady and unsteady flows

    Get PDF
    The numerical solution of the laminar boundary-layer flow over an embedded cavity is studied. The purpose is to examine the relevant drag characteristics of laminar cavity flow. The solution field is obtained in terms of velocity and vorticity variables, with the stream function and pressure derivable from the directly computed variables. An analysis and comparison is made among four square cavities, ranging in size from 0.25 to 1.00 boundary-layer thicknesses deep. The dominant flow features are examined in the vicinity of the cavity by means of the stream function and iso-vorticity contours. The dominant physics in the overall drag characteristics of the flow is examined by an analysis of the pressure and wall shear stress distributions in the cavity, and upstream and downstream of the cavity. Pressure forces and frictional forces in, and in the vicinity of, the cavity are determined. Stress relaxation distances, both upstream and downstream of the cavity, are calculated and analyzed. The flow dynamics of the boundary-layer flow over an embedded cavity is summarized. Finally, the relevance of the results to the control of flow separation in such flows is discussed

    Inviscid spatial stability of a compressible mixing layer. Part 2: The flame sheet model

    Get PDF
    The results of an inviscid spatial calculation for a compressible reacting mixing layer are reported. The limit of infinitive activation energy is taken and the diffusion flame is approximated by a flame sheet. Results are reported for the phase speeds of the neutral waves and maximum growth rates of the unstable waves as a function of the parameters of the problem: the ratio of the temperature of the stationary stream to that of the moving stream, the Mach number of the moving streams, the heat release per unit mass fraction of the reactant, the equivalence ratio of the reaction, and the frequency of the disturbance. These results are compared to the phase speeds and growth rates of the corresponding nonreacting mixing layer. We show that the addition of combustion has important, and complex effects on the flow stability

    A numerical study of the 2- and 3-dimensional unsteady Navier-Stokes equations in velocity-vorticity variables using compact difference schemes

    Get PDF
    A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented

    Higher modes of the Orr-Sommerfeld problem for boundary layer flows

    Get PDF
    The discrete spectrum of the Orr-Sommerfeld problem of hydrodynamic stability for boundary layer flows in semi-infinite regions is examined. Related questions concerning the continuous spectrum are also addressed. Emphasis is placed on the stability problem for the Blasius boundary layer profile. A general theoretical result is given which proves that the discrete spectrum of the Orr-Sommerfeld problem for boundary layer profiles (U(y), 0,0) has only a finite number of discrete modes when U(y) has derivatives of all orders. Details are given of a highly accurate numerical technique based on collocation with splines for the calculation of stability characteristics. The technique includes replacement of 'outer' boundary conditions by asymptotic forms based on the proper large parameter in the stability problem. Implementation of the asymptotic boundary conditions is such that there is no need to make apriori distinctions between subcases of the discrete spectrum or between the discrete and continuous spectrums. Typical calculations for the usual Blasius problem are presented
    • …
    corecore